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and the Sprague 
Grundy Theorem



Introducing: The Game of Nim

There are three piles, or nim-heaps, of stones. Players 1 and 2 alternate 
taking off any non zero number of stones from a pile until there are no stones 
left

https://www.archimedes-lab.org/game_nim/play_nim_game.html

https://www.archimedes-lab.org/game_nim/play_nim_game.html


Why do we care about this 
game?



Some Definitions

Combinatorial games:

● There are two players.

● There is a finite set of positions available in the game

● Rules specify which game positions each player can move to.

● Players alternate moving.

● The game ends when a player can’t make a move.

● The game eventually ends (it’s not infinite).

Impartial games:

In this type of game, the set of allowable moves depends only on the position of the game 
and not on which of the two players is moving. Examples: Nim



Types of Nim

There are 2 versions of the game that have different winning conditions;

● Normal Play
● Misere Play



The Strategy - prerequisites

Possible positions in the game:

1. A game is in a P-position if it secures a win for the Previous player (the one who just 

moved)

 eg: (1,1,0) in normal play and (1,0,0) in a misere play game

2. A game is in a N-position if it secures a win for the Next player.

 eg: (1,0,0) in normal play and (1,1,0) in a misere play game



How can they be identified?

Define every position as N or P using backward induction 

1. Every terminal position is a P pos

2. Every position that can reach a P pos is a N pos

3. Positions that move only to N pos are P



Nimber arithmetic

Nim-sum is an XOR sum of values (number of stones in each heap)
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Nimber arithmetic

Nim-sum is an XOR sum of values (number of stones in each heap)

Assumption: everyone knows what the bitwise XOR is (if not, here is a truth table)



The winning strategy



The winning strategy in 
normal play Nim is to finish 
every move with a Nim-sum 
of 0.



Explaining the strategy

● If the Nim-sum is 0 after a player’s turn, then the next move must change 
it.(prove using invertibility)

● It is always possible to make the nim-sum 0 on your turn if it wasn’t already 0 at 
the beginning of your turn.(hint: consider MSB)



Explaining the strategy

● If the Nim-sum is 0 after a player’s turn, then the next move must change 
it.(prove using invertibility)

● It is always possible to make the nim-sum 0 on your turn if it wasn’t already 0 at 
the beginning of your turn.(hint: pick the largest number)

If convinced of the above the proof, think about misere play



From wikipedia 



From wikipedia 
The proof is left as an exercise to the reader

- I.N Herstein 
from Topics in Algebra by Herstein



Bogus nim heap:

You can add or subtract coins.
There’s some limitations to maintain finite-ness of the game which can be 
arbitrary. Note that this does not change how N and P positions are assigned



Some random stuff related to Nim

● What is the longest possible optimal game of Nim(you can only control one 
player)?

Also, you can control whether the game starts on an N-position or a P-position



Some random stuff related to Nim

● What is the longest possible optimal game of Nim(you can only control one 
player)?

Also, you can control whether the game starts on an N-position or a P-position

● 3-heap Nim as an Automaton

https://www.emis.de/journals/JIS/VOL17/Khovanova/khova6.pdf

https://www.emis.de/journals/JIS/VOL17/Khovanova/khova6.pdf


Finally, The Sprague Grundy 
Theorem



Before that, some more 
prerequisites



Representing games as graphs

A game consists of a graph G = (X, F) where:
• X is the set of all possible game positions

• F is a function that gives for each x ∈ X a subset of possible x’s to move to, 
called followers. If F (x) is empty, the position x is terminal

• The start position is x
0

 ∈ X. So player 1 moves first from x
0

• Players alternate moves. At position x, the player chooses from y ∈ F(x)

• The player confronted with the empty set F(x) loses

Note: the graph is finite and acyclic (such a graph is said to be progressively 
bounded)

Side note: This seems like it can be modelled as an automaton?(refer:https://arxiv.org/abs/1405.5942 ) 
IGNORE IF YOU DON’T KNOW ANY AUTOMATA THEORY

https://arxiv.org/abs/1405.5942


One pile nim

To understand the generalisation i will first further restrict our game of nim

Also called the 21 counting game, one pile nim is a game of nim with one pile and a 
restriction on how many stones can be removed(at most 3 at a time) 

Winning strategy? 



The Sprague Grundy Function

We are not at the Sprague Grundy Theorem yet, the title is a deception

For those who know: it is just a MEX function

Henceforth, Sprague Grundy is abbreviated as SG except when required for 
dramatic effect



What is a MEX function?

The smallest non-negative value not found among the SG values of the followers of 
x.(Note: SG values are not defined yet. Also, this definition is specific to nim)

In general MEX is defined as M(S) = min({x: x does not belong to S}) (most non math 
definition I have)



What are SG values

Very clearly a circular explanation:

SG values are values assigned by the SG function 

Now, to actually explain it. It is a recursive definition

So we’ll need some base cases. 

Set all terminal nodes x to have g(x) = 0. 

Then any nodes that have only terminal nodes as followers have g(x) = 1.



Let’s try an example

On completion, label N and P positions (if I have time, I’ll do it now)



In case there is no time…



Doubts?
Before we actually get to the SG Theorem



Finally, The Sprague Grundy Theorem

The Statement: Any position of an impartial game is equivalent to a nim pile of a 
certain size. □

Towards understanding the above very heavy statement

An equivalent statement: The SG function for a sum of games on a graph is just the 
Nim sum of the SG functions of its components.

Explanation:

If gi is the Sprague-Grundy function of Gi , i = 1 . . . n, then G = G1 +. . .+Gn has 
Sprague-Grundy function g(x1 . . . xn ) = g1 (x1 ) ⊕… gn (xn ).



Sum of graphs(defining an algebra)

To sum the games G1 = (X1 , F1 ), G2 = (X2 , F2 ), . . . Gn = (Xn , FN ), G(X, F ) = G1 + G2 + . . . + Gn 

where: 

● X = X1 ×X2 ×X3 . . .×Xn , or the set of all n-tuples such that xi ∈ Xi ∀i 

●  The maximum number of moves is the sum of the maximum number of moves of each 

component game

The transition function is redefined to get F appropriately

Also: 

G + H = H + G

(G + H) + K = G + (H + K)



The Proof (refer: 
https://web.mit.edu/sp.268/www/nim.pdf):

Let x = (x1 . . . xn ) be an arbitrary point of X(n tuple defined as X1 x X2 x X3… where 
X1, X2… are the vertex sets of the component graphs). Let b = g1 (x1 ) ⊕ . . . ⊕ gn (xn ). 
We are to show two things for the function g(x1 . . . xn ):

1. For every non-negative integer a < b, there is a follower of (x1 . . . xn ) that has 
g-value a.

2. No follower of (x1 . . . xn ) has g-value b.

https://web.mit.edu/sp.268/www/nim.pdf


Looking at any impartial game as Nim

1. How are the two statements I gave equivalent?

2. Any game can be represented as n-heap nim?

3. Is N-heap nim equivalent to one-heap nim?



The Ulam-Warburton automaton

A 3-pile nim game 
can be represented 
as an automaton of 
this form

- https://www.emis.de
/journals/JIS/VOL17
/Khovanova/khova6.
pdf

https://www.emis.de/journals/JIS/VOL17/Khovanova/khova6.pdf
https://www.emis.de/journals/JIS/VOL17/Khovanova/khova6.pdf
https://www.emis.de/journals/JIS/VOL17/Khovanova/khova6.pdf
https://www.emis.de/journals/JIS/VOL17/Khovanova/khova6.pdf


The game of Chomp

https://www.math.ucla.edu/~tom/Games/chomp.html
The above is a link to the game itself

https://www.math.ucla.edu/~tom/Games/chomp.html
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For any rectangular starting position, other than 1×1, the first player can win.
This can be shown by a strategy stealing argument.

For a square starting position the strategy is obvious. 

https://www.math.ucla.edu/~tom/Games/chomp.html


The game of Chomp

https://www.math.ucla.edu/~tom/Games/chomp.html
The above is a link to the game itself

For any rectangular starting position, other than 1×1, the first player can win.
This can be shown by a strategy stealing argument.

For a square starting position the strategy is obvious. 

There is no general strategy to win Chomp yet even though it has been proved that such a 
strategy exists.

This means we cannot assign general Grundy values to a game of Chomp, it is specific to the 
game

https://www.math.ucla.edu/~tom/Games/chomp.html


Credits

Tanya Khovanova’s blog : https://blog.tanyakhovanova.com/

Lecture notes from MIT: https://web.mit.edu/sp.268/www/nim.pdf

Stuff on Chomp: https://www.win.tue.nl/~aeb/games/chomp.html

https://blog.tanyakhovanova.com/
https://web.mit.edu/sp.268/www/nim.pdf
https://www.win.tue.nl/~aeb/games/chomp.html


Thank You


