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Noether's Isomorphism Theorems (A)

For a group homomorphism f: G — H,

imf 2 G /kerf
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Prerequisites .. . N
: General definition with n-cells
o
=3k
i=0
General definition with Betti numbers

x=> (-1)B;
i=0
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Druhan Shah Given a convex polyhedron, construct its net (which is an
undirected graph)

Literally m Label vertices, assign directions to the edges and create
CodeForces incidence matrix A
m Now, nullity(AT) = 1, which means rank(A) = V — 1
m Ny is generated by considering flows through loops in the
graph!
m So, nullity(A) = F —1

m We are donel
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Homeomorphisms

alil, o i
Corporate needs you to find the differences
between this picture and this picture.

They're the same picture.

Figure: They both have one "hole"
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m Basically triangles

m Convex hull of n+ 1 vertices

n n
C, = Za,—u,- Za,-:l/\a,-zo
i=0 i=0

Coffee in my
A\WELE]
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Chain complex

Sequence of Chain groups and border maps {C,, ds } such that

0 0! o
Coffee in my _2>C1_1>C0_0)
A\WELE]
and

8,108”_1 = 0
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Free Abelian group on a set S

Group G = (S, +) with a basis B C S such that
§E€EG=>g=>)cpaibi

Yes Homo! Rank O'F a free group

Cardinality of the basis
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m Basically a simplicial 1-complex (Buncha 0- and 1-
simplices)

m Treat each edge as homeomomorphic to [0, 1] and you're
done

Yes Homol!

m Topological results go brrrr
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Druhan Shah We want a bunch of h, where the $n$-th thing is the
number of $n$-dimensional holes.

m We want some way of characterizing an $n$-dimensional
hole using boundaries and chains.
m Enter H, = kerd,/imdp1

m We want to classify all loops (hence imd,.1) based on
whether they enclose a hole or not. If they don’t then they
should be homeomorphic to 0 (hence kerd,)

Yes Homol!

m Leads to another chain complex called the Homology
Complex (but lite)
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Druhan Shab m ( is the free abelian group generated by the set of
vertices, (7 is the free abelian group generated by the set
of directed edges.

m Border maps are somewhat nontrivial.

m Define 0; for an edge as target - source
m So cycles in Cy result in 0 in Gy
Oh yeah, it's m g is trivial

all coming

together m We have our Homology groups!




Graph Homologies (contd.)
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Druhan Shah m We have dim H; = dim kerd; — dimimd, and
dim Hy = dim ker0g — dim imd;
m RNT also gives us dim C; = dim kerd; + dimimd; and
dim Co = dim kerdg + dim im0y
m So, we have
- dim H; — dim Hy = dim ¢; — dim Gy — dimim@d + dimimdy
s which is the same as dim H; — dim Hy = dim C; — dim Gy
m Now, by definition, we have dim Gy = V and dim G, = E

together



Back to Grade 7 or whenever

All
Alternating
Sums are
Secretly the
Same

Druhan Shah

m Now for planar graphs, we have dim H; = F — 1 which is
the number of linearly independent faces and dim Hy = 1
which is the number of connected components.

m We have our good ol' F — E+ V =2 (1)

Oh yeah, it's
all coming
together
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m For planar graphs, this can also be arrived at by counting
the number of edges in E — T where T is a spanning tree,
which gives the number of linearly independent cycles.

m This gives a nice intuition for generalizations that have
nothing to do with the Euler Characteristic, but are nice to
Oh yeah, it's knOW.

all coming
together
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