A Trivial Randomized Approximation Algorithm for MAX-E3SAT

Arjun P

5 September, 2020

Given: 3SAT instance where each clause has exactly three literals. Example:

$$(X \lor Y \lor Z) \land (X \lor Y \lor \overline{Z}) \land (X \lor \overline{Y} \lor Z) \land (X \lor \overline{Y} \lor \overline{Z}) \land (X \lor \overline{Y} \lor \overline{Z}) \land (X \lor Y \lor \overline{Z}) \land (X \lor \overline{Y} \lor \overline{Z}) \land (X \lor \overline{Y} \lor \overline{Z})$$

Goal: Find an assignment to satisfy as many clauses as possible.

The Algorithm

(4日) (個) (主) (主) (三) の(の)

The Algorithm

Choose each variable to be true or false uniformly at random.

(ロ)、(型)、(E)、(E)、 E) の(()

Let C₁,...C_m be indicator RVs, with C_i denoting whether the ith clause is satisfied.

Analysis

Let C₁,... C_m be indicator RVs, with C_i denoting whether the *i*th clause is satisfied.

• $\mathbb{E}[C_i] = 1 - 1/2^{l_i}$, where l_i is the number of literals in the clause.

Analysis

- Let C₁,...C_m be indicator RVs, with C_i denoting whether the *i*th clause is satisfied.
- $\mathbb{E}[C_i] = 1 1/2^{l_i}$, where l_i is the number of literals in the clause.
- Expected number of satisfied clauses is $\mathbb{E}[\sum_i C_i] = 7m/8$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Can there be an input with m clauses, such that we can't even satisfy [7m/8] clauses at once?

- Can there be an input with m clauses, such that we can't even satisfy [7m/8] clauses at once?
- Our algorithm satisfies at least 7m/8 clauses on average.

- Can there be an input with m clauses, such that we can't even satisfy [7m/8] clauses at once?
- Our algorithm satisfies at least 7m/8 clauses on average.
- This would not be possible if there didn't exist at least one solution that satisfies at least 7m/8 clauses. Although the algorithm is randomized, our conclusion is deterministic: there always exists such a solution.

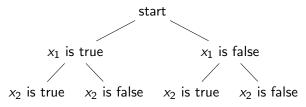
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Can there be an input with m clauses, such that we can't even satisfy [7m/8] clauses at once?
- Our algorithm satisfies at least 7m/8 clauses on average.
- This would not be possible if there didn't exist at least one solution that satisfies at least 7m/8 clauses. Although the algorithm is randomized, our conclusion is deterministic: there always exists such a solution.
- Non-constructive: We don't know what the solution is, but we know one always exists.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Consider the brute force algorithm that tries all possibilities.

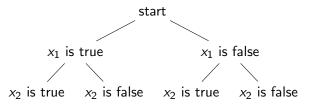
- Consider the brute force algorithm that tries all possibilities.
- ▶ At the *i*th level, we assign the *i*th variable.



Consider the brute force algorithm that tries all possibilities.

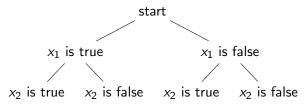
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• At the *i*th level, we assign the *i*th variable.



Use the conditional expectation as a heuristic to derandomize the algorithm.

- Consider the brute force algorithm that tries all possibilities.
- At the *i*th level, we assign the *i*th variable.



- Use the conditional expectation as a heuristic to derandomize the algorithm.
- Optimal: unless P = NP, this is the best approximation ratio a polytime algorithm can achieve.

Conclusion

- Trivial randomized algorithms can do surprisingly well.
- Randomized algorithms can give deterministic conclusions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Some kinds of randomized algorithms can be easily derandomized.

Bonus: E3SAT is NP-hard

Reduction from 3SAT: given a 3SAT instance, construct equisatisfiable E3SAT instance.

Bonus: E3SAT is NP-hard

Reduction from 3SAT: given a 3SAT instance, construct equisatisfiable E3SAT instance.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- X becomes $(X \lor T) \land (X \lor \overline{T})$.
- $X \lor Y$ becomes $(X \lor Y \lor T) \land (X \lor Y \lor \overline{T})$.

Bonus: E3SAT is NP-hard

Reduction from 3SAT: given a 3SAT instance, construct equisatisfiable E3SAT instance.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- X becomes $(X \lor T) \land (X \lor \overline{T})$.
- $X \lor Y$ becomes $(X \lor Y \lor T) \land (X \lor Y \lor \overline{T})$.
- Why can't we use this to approximate 3SAT?