
A Trivial Randomized Approximation Algorithm
for MAX-E3SAT

Arjun P

5 September, 2020



The Problem

Given: 3SAT instance where each clause has exactly three literals.
Example:

(X ∨ Y ∨ Z ) ∧ (X ∨ Y ∨ Z ) ∧ (X ∨ Y ∨ Z ) ∧ (X ∨ Y ∨ Z ) ∧
(X ∨ Y ∨ Z ) ∧ (X ∨ Y ∨ Z ) ∧ (X ∨ Y ∨ Z ) ∧ (X ∨ Y ∨ Z )

Goal: Find an assignment to satisfy as many clauses as possible.



The Algorithm

Choose each variable to be true or false uniformly at random.



The Algorithm

Choose each variable to be true or false uniformly at random.



Analysis

I Let C1, . . .Cm be indicator RVs, with Ci denoting whether the
ith clause is satisfied.

I E[Ci ] = 1− 1/2li , where li is the number of literals in the
clause.

I Expected number of satisfied clauses is E[
∑

i Ci ] = 7m/8.



Analysis

I Let C1, . . .Cm be indicator RVs, with Ci denoting whether the
ith clause is satisfied.

I E[Ci ] = 1− 1/2li , where li is the number of literals in the
clause.

I Expected number of satisfied clauses is E[
∑

i Ci ] = 7m/8.



Analysis

I Let C1, . . .Cm be indicator RVs, with Ci denoting whether the
ith clause is satisfied.

I E[Ci ] = 1− 1/2li , where li is the number of literals in the
clause.

I Expected number of satisfied clauses is E[
∑

i Ci ] = 7m/8.



The Probabilistic Method

I Can there be an input with m clauses, such that we can’t
even satisfy d7m/8e clauses at once?

I Our algorithm satisfies at least 7m/8 clauses on average.

I This would not be possible if there didn’t exist at least one
solution that satisfies at least 7m/8 clauses. Although the
algorithm is randomized, our conclusion is deterministic:
there always exists such a solution.

I Non-constructive: We don’t know what the solution is, but we
know one always exists.



The Probabilistic Method

I Can there be an input with m clauses, such that we can’t
even satisfy d7m/8e clauses at once?

I Our algorithm satisfies at least 7m/8 clauses on average.

I This would not be possible if there didn’t exist at least one
solution that satisfies at least 7m/8 clauses. Although the
algorithm is randomized, our conclusion is deterministic:
there always exists such a solution.

I Non-constructive: We don’t know what the solution is, but we
know one always exists.



The Probabilistic Method

I Can there be an input with m clauses, such that we can’t
even satisfy d7m/8e clauses at once?

I Our algorithm satisfies at least 7m/8 clauses on average.

I This would not be possible if there didn’t exist at least one
solution that satisfies at least 7m/8 clauses. Although the
algorithm is randomized, our conclusion is deterministic:
there always exists such a solution.

I Non-constructive: We don’t know what the solution is, but we
know one always exists.



The Probabilistic Method

I Can there be an input with m clauses, such that we can’t
even satisfy d7m/8e clauses at once?

I Our algorithm satisfies at least 7m/8 clauses on average.

I This would not be possible if there didn’t exist at least one
solution that satisfies at least 7m/8 clauses. Although the
algorithm is randomized, our conclusion is deterministic:
there always exists such a solution.

I Non-constructive: We don’t know what the solution is, but we
know one always exists.



A Deterministic Algorithm

I Consider the brute force algorithm that tries all possibilities.

I At the ith level, we assign the ith variable.

start

x1 is true

x2 is true x2 is false

x1 is false

x2 is true x2 is false

I Use the conditional expectation as a heuristic to
derandomize the algorithm.

I Optimal: unless P = NP, this is the best approximation ratio
a polytime algorithm can achieve.



A Deterministic Algorithm

I Consider the brute force algorithm that tries all possibilities.

I At the ith level, we assign the ith variable.

start

x1 is true

x2 is true x2 is false

x1 is false

x2 is true x2 is false

I Use the conditional expectation as a heuristic to
derandomize the algorithm.

I Optimal: unless P = NP, this is the best approximation ratio
a polytime algorithm can achieve.



A Deterministic Algorithm

I Consider the brute force algorithm that tries all possibilities.

I At the ith level, we assign the ith variable.

start

x1 is true

x2 is true x2 is false

x1 is false

x2 is true x2 is false

I Use the conditional expectation as a heuristic to
derandomize the algorithm.

I Optimal: unless P = NP, this is the best approximation ratio
a polytime algorithm can achieve.



A Deterministic Algorithm

I Consider the brute force algorithm that tries all possibilities.

I At the ith level, we assign the ith variable.

start

x1 is true

x2 is true x2 is false

x1 is false

x2 is true x2 is false

I Use the conditional expectation as a heuristic to
derandomize the algorithm.

I Optimal: unless P = NP, this is the best approximation ratio
a polytime algorithm can achieve.



Conclusion

I Trivial randomized algorithms can do surprisingly well.

I Randomized algorithms can give deterministic conclusions.

I Some kinds of randomized algorithms can be easily
derandomized.



Bonus: E3SAT is NP-hard

I Reduction from 3SAT: given a 3SAT instance, construct
equisatisfiable E3SAT instance.

I X becomes (X ∨ T ) ∧ (X ∨ T ).

I X ∨ Y becomes (X ∨ Y ∨ T ) ∧ (X ∨ Y ∨ T ).

I Why can’t we use this to approximate 3SAT?



Bonus: E3SAT is NP-hard

I Reduction from 3SAT: given a 3SAT instance, construct
equisatisfiable E3SAT instance.

I X becomes (X ∨ T ) ∧ (X ∨ T ).

I X ∨ Y becomes (X ∨ Y ∨ T ) ∧ (X ∨ Y ∨ T ).

I Why can’t we use this to approximate 3SAT?



Bonus: E3SAT is NP-hard

I Reduction from 3SAT: given a 3SAT instance, construct
equisatisfiable E3SAT instance.

I X becomes (X ∨ T ) ∧ (X ∨ T ).

I X ∨ Y becomes (X ∨ Y ∨ T ) ∧ (X ∨ Y ∨ T ).

I Why can’t we use this to approximate 3SAT?


