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The Problem

Given: 3SAT instance where each clause has exactly three literals.
Example:

(X ∨ Y ∨ Z ) ∧ (X ∨ Y ∨ Z ) ∧ (X ∨ Y ∨ Z ) ∧ (X ∨ Y ∨ Z ) ∧
(X ∨ Y ∨ Z ) ∧ (X ∨ Y ∨ Z ) ∧ (X ∨ Y ∨ Z ) ∧ (X ∨ Y ∨ Z )

Goal: Find an assignment to satisfy as many clauses as possible.



The Algorithm

Choose each variable to be true or false uniformly at random.
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Analysis

I Let C1, . . .Cm be indicator RVs, with Ci denoting whether the
ith clause is satisfied.

I E[Ci ] = 1− 1/2li , where li is the number of literals in the
clause.

I Expected number of satisfied clauses is E[
∑

i Ci ] = 7m/8.
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The Probabilistic Method

I Can there be an input with m clauses, such that we can’t
even satisfy d7m/8e clauses at once?

I Our algorithm satisfies at least 7m/8 clauses on average.

I This would not be possible if there didn’t exist at least one
solution that satisfies at least 7m/8 clauses. Although the
algorithm is randomized, our conclusion is deterministic:
there always exists such a solution.

I Non-constructive: We don’t know what the solution is, but we
know one always exists.
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A Deterministic Algorithm

I Consider the brute force algorithm that tries all possibilities.

I At the ith level, we assign the ith variable.

start

x1 is true

x2 is true x2 is false

x1 is false

x2 is true x2 is false

I Use the conditional expectation as a heuristic to
derandomize the algorithm.

I Optimal: unless P = NP, this is the best approximation ratio
a polytime algorithm can achieve.
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Conclusion

I Trivial randomized algorithms can do surprisingly well.

I Randomized algorithms can give deterministic conclusions.

I Some kinds of randomized algorithms can be easily
derandomized.



Bonus: E3SAT is NP-hard

I Reduction from 3SAT: given a 3SAT instance, construct
equisatisfiable E3SAT instance.

I X becomes (X ∨ T ) ∧ (X ∨ T ).

I X ∨ Y becomes (X ∨ Y ∨ T ) ∧ (X ∨ Y ∨ T ).

I Why can’t we use this to approximate 3SAT?
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