Automated Theorem Proving A humble computer's Math PhD dissertation

Anurudh Peduri

IIITH

26-09-2020

Anurudh Peduri Automated Theorem Proving

Talk Overview

Why do we need verified mathematics?

- 2 What are Theorem Provers?
- 3 How do Theorem Provers work?

Mathematics

Humans have been doing mathematics for centuries.

(日)

문▶ 문

Mathematics

Humans have been doing mathematics for centuries.

We have made so many breakthroughs, invented so much mathematical machinery, and have used it in various fields.

Mathematics

Humans have been doing mathematics for centuries.

We have made so many breakthroughs, invented so much mathematical machinery, and have used it in various fields.

Now we have reached a stage with too much mathematical theory!

Verifying Mathematics

Researchers submit papers, and reviewers read and verify them.

Verifying Mathematics

Researchers submit papers, and reviewers read and verify them.

Humans are great at coming up with ideas, but are prone to errors.

Verifying Mathematics

Researchers submit papers, and reviewers read and verify them.

Humans are great at coming up with ideas, but are prone to errors.

Accurately verifying research level publications is a very difficult task.

Solution?

How do we overcome this?

æ

Solution?

How do we overcome this? ...drumroll...

æ

Solution?

How do we overcome this? ...drumroll... use computers!

æ

Solution?

How do we overcome this? ...drumroll... use computers!

Computers are bad at coming up with ideas. But great at following instructions.

Solution?

How do we overcome this? ...drumroll... use computers!

Computers are bad at coming up with ideas. But great at following instructions.

If only we could instruct them on how to check math proofs...

Solution?

How do we overcome this? ...drumroll... use computers!

Computers are bad at coming up with ideas. But great at following instructions.

If only we could instruct them on how to check math proofs...

We can! Automated Theorem Provers (Proof Checkers to be accurate)

What are Theorem Provers?

Programs that can take in "math proofs" and verify them.

What are Theorem Provers?

Programs that can take in "math proofs" and verify them.

We also have Proof Assistants/Interactive Theorem Provers: Programs that help us write proofs.

What are Theorem Provers?

Programs that can take in "math proofs" and verify them.

We also have Proof Assistants/Interactive Theorem Provers: Programs that help us write proofs.

A few popular Proof Assistants are Coq, Lean, Isabelle, Agda.

A few examples

Here are some (pseudo-)random theorems picked from the Lean library - mathlib

< ∃ >

A few examples

theorem zmod.euler_criterion (p : N) [fact (nat.prime p)] {a : zmod p} :
 a ≠ 0 → ((∃ (y : zmod p), y ^ 2 = a) ↔ a ^ (p / 2) = 1)

Euler's Criterion: a nonzero a : zmod p is a square if and only if x ^ (p / 2) = 1.

< ロ > < 同 > < 回 > < 回 > < □ > <

3

A few examples

theorem nat.exists_infinite_primes $(n : \mathbb{N})$: $\exists (p : \mathbb{N}), n \leq p \land nat.prime p$

source

Euclid's theorem. There exist infinitely many prime numbers. Here given in the form: for every n, there exists a prime number $p \ge n$.

(日)

A few examples

theorem nat.sum_four_squares $(n : \mathbb{N})$: \exists (a b c d : \mathbb{N}), a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = n

Anurudh Peduri Automated Theorem Proving

イロト イポト イヨト イヨト

A few examples

theorem abs_inner_le_norm { α : Type u} [inner_product_space α] (x y : α) : abs (has_inner.inner x y) $\leq ||x|| + ||y||$

Cauchy-Schwarz inequality with norm

(日)

Teaching a computer math

Encoding math notation directly is difficult.

Teaching a computer math

Encoding math notation directly is difficult.

So, we invoke a very powerful result -

Curry-Howard Correspondence

Teaching a computer math

Encoding math notation directly is difficult.

So, we invoke a very powerful result -

Curry-Howard Correspondence

Equivalence between "Mathematical Proofs" and "Computer Programs"

Curry-Howard Correspondence

Propositions

Ρ

Anurudh Peduri Automated Theorem Proving

(日)

э

Curry-Howard Correspondence

 ${\sf Propositions} \quad \leftrightarrow \qquad {\sf Sets}$

Ρ

Ρ

Anurudh Peduri Automated Theorem Proving

(日)

B> B

Curry-Howard Correspondence

Propositions ↔ Sets Proof

p is a proof of P

→ < ∃ →</p>

Curry-Howard Correspondence

Propositions	\leftrightarrow	Sets	
Proof	\leftrightarrow	Element	

p is a proof of P $p \in P$

(日)

Curry-Howard Correspondence

$\begin{array}{c|c} \mathsf{Propositions} & \leftrightarrow & \mathsf{Sets} \\ \hline \mathsf{Proof} & \leftrightarrow & \mathsf{Element} \\ \mathsf{Theorem}/\mathsf{True} \end{array}$

p is a proof of P $p \in P$

Curry-Howard Correspondence

$\begin{array}{ccc} \mbox{Propositions} & \leftrightarrow & \mbox{Sets} \\ \hline \mbox{Proof} & \leftrightarrow & \mbox{Element} \\ \hline \mbox{Theorem}/\mbox{True} & \leftrightarrow & \mbox{Non-empty Set} \\ \end{array}$

p is a proof of P $p \in P$

-

Curry-Howard Correspondence

$\begin{array}{ccc} \mbox{Propositions} & \leftrightarrow & \mbox{Sets} \\ \hline \mbox{Proof} & \leftrightarrow & \mbox{Element} \\ \mbox{Theorem/True} & \leftrightarrow & \mbox{Non-empty Set} \\ \mbox{And} \end{array}$

$P \wedge Q$

Curry-Howard Correspondence

Propositions	\leftrightarrow	Sets	
Proof	\leftrightarrow	Element	
Theorem/True	\leftrightarrow	Non-empty Set	
And	\leftrightarrow	Cartesian Product	

 $P \land Q$ $P \times Q$

Anurudh Peduri Automated Theorem Proving

(日)

문 문

Curry-Howard Correspondence

Propositions	\leftrightarrow	Sets	
Proof	\leftrightarrow	Element	
Theorem/True	\leftrightarrow	Non-empty Set	
And	\leftrightarrow	Cartesian Product	
Or			

$P \lor Q$

(日)

B> B

Curry-Howard Correspondence

Propositions	\leftrightarrow	Sets	
Proof	\leftrightarrow	Element	
Theorem/True	\leftrightarrow	Non-empty Set	
And	\leftrightarrow	Cartesian Product	
Or	\leftrightarrow	Disjoint Union	

 $P \lor Q$ $P \sqcup Q$

Anurudh Peduri Automated Theorem Proving

イロト イ団ト イヨト イヨト

Curry-Howard Correspondence

Propositions	\leftrightarrow	Sets	
Proof	\leftrightarrow	Element	
Theorem/True	\leftrightarrow	Non-empty Set	
And	\leftrightarrow	Cartesian Product	
Or	\leftrightarrow	Disjoint Union	
Implies			

$$P \implies Q$$

(日)

B> B

Curry-Howard Correspondence

Propositions	\leftrightarrow	Sets	
Proof	\leftrightarrow	Element	
Theorem/True	\leftrightarrow	Non-empty Set	
And	\leftrightarrow	Cartesian Product	
Or	\leftrightarrow	Disjoint Union	
Implies	\leftrightarrow	Function	
$P \implies Q$		P ightarrow Q	

Image: A mathematical states and a mathem

Curry-Howard Correspondence

Anurudh Peduri Automated Theorem Proving

Image: A mathematical states and a mathem

Curry-Howard Correspondence

Propositions	\leftrightarrow	Sets	\leftrightarrow	Types	
Proof	\leftrightarrow	Element	\leftrightarrow	Value	
Theorem/True	\leftrightarrow	Non-empty Set			
And	\leftrightarrow	Cartesian Product			
Or	\leftrightarrow	Disjoint Union			
Implies	\leftrightarrow	Function			
p is a proof of P $p \in P$ P p;					

Image: A mathematical states and a mathem

Curry-Howard Correspondence

Propositions	\leftrightarrow	Sets	\leftrightarrow	Types	
Proof	\leftrightarrow	Element	\leftrightarrow	Value	
Theorem/True	\leftrightarrow	Non-empty Set	\leftrightarrow	Inhabited Type	
And	\leftrightarrow	Cartesian Product			
Or	\leftrightarrow	Disjoint Union			
Implies	\leftrightarrow	Function			
p is a proof of P $p \in P$ P p;					

Anurudh Peduri Automated Theorem Proving

Image: A mathematical states and a mathem

Curry-Howard Correspondence

Propositions	\leftrightarrow	Sets	\leftrightarrow	Types
Proof	\leftrightarrow	Element	\leftrightarrow	Value
Theorem/True	\leftrightarrow	Non-empty Set	\leftrightarrow	Inhabited Type
And	\leftrightarrow	Cartesian Product	\leftrightarrow	Pairs/Product Type
Or	\leftrightarrow	Disjoint Union		
Implies	\leftrightarrow	Function		

Anurudh Peduri Automated Theorem Proving

Curry-Howard Correspondence

Propositions	\leftrightarrow	Sets	\leftrightarrow	Types
Proof	\leftrightarrow	Element	\leftrightarrow	Value
Theorem/True	\leftrightarrow	Non-empty Set	\leftrightarrow	Inhabited Type
And	\leftrightarrow	Cartesian Product	\leftrightarrow	Pairs/Product Type
Or	\leftrightarrow	Disjoint Union	\leftrightarrow	union/Sum Type
Implies	\leftrightarrow	Function		

Curry-Howard Correspondence

Propositions	\leftrightarrow	Sets	\leftrightarrow	Types
Proof	\leftrightarrow	Element	\leftrightarrow	Value
Theorem/True	\leftrightarrow	Non-empty Set	\leftrightarrow	Inhabited Type
And	\leftrightarrow	Cartesian Product	\leftrightarrow	Pairs/Product Type
Or	\leftrightarrow	Disjoint Union	\leftrightarrow	union/Sum Type
Implies	\leftrightarrow	Function	\leftrightarrow	function
$P \implies Q$		P ightarrow Q		Qf(Pp);

Image: A mathematical states and a mathem

A few more equivalences

${\sf Propositions} \hspace{0.2cm} \leftrightarrow \hspace{0.2cm} {\sf Types}$

Anurudh Peduri Automated Theorem Proving

(日)

문 문

A few more equivalences

 Propositions
 ↔
 Types

 Predicates

P(x) where $x \in S$

Anurudh Peduri Automated Theorem Proving

- E

A few more equivalences

Propositions	\leftrightarrow	Types
Predicates	\leftrightarrow	Function

P(x) where $x \in S$ $P: S \rightarrow Prop$

Anurudh Peduri Automated Theorem Proving

(日)

문▶ 문

A few more equivalences

Propositions	\leftrightarrow	Types
Predicates	\leftrightarrow	Function
Exists		

 $\exists x \in S, P(x)$

Anurudh Peduri Automated Theorem Proving

< □ > < □ > < □ > < □ >

э

A few more equivalences

Propositions	\leftrightarrow	Types				
Predicates	\leftrightarrow	Function				
Exists	\leftrightarrow	Sum Dependent Type				

 $\exists x \in S, P(x) \qquad (a, p_a) \in \Sigma_{x:S} P(x)$

イロト イヨト イヨト イヨト

A few more equivalences

Propositions	\leftrightarrow	Types				
Predicates	\leftrightarrow	Function				
Exists	\leftrightarrow	Sum Dependent Type				
Forall						

 $\forall x \in S, P(x)$

Anurudh Peduri Automated Theorem Proving

< □ > < □ > < □ > < □ >

æ

A few more equivalences

Propositions	\leftrightarrow	Types				
Predicates	\leftrightarrow	Function				
Exists	\leftrightarrow	Sum Dependent Type				
Forall	\leftrightarrow	Product Dependent Type				

 $\forall x \in S, P(x)$

 $f \in \Pi_{x:S}P(x)$ $f:(x:S) \rightarrow P(x)$

イロト イヨト イヨト イヨト

$\mathsf{Proof}\;\mathsf{Checker}\to$

Anurudh Peduri Automated Theorem Proving

æ

Proof Checker \rightarrow Type Checker! (or compiler)

Anurudh Peduri Automated Theorem Proving

< □ > < □ > < □ > < □ >

$\begin{array}{l} {\sf Proof \ Checker} \to {\sf Type \ Checker! \ (or \ compiler)} \\ {\sf Writing \ Proofs} \to \end{array}$

→ < ∃ →

Proof Checker \to Type Checker! (or compiler) Writing Proofs \to Writing programs to build values of a particular type

Proof Checker \rightarrow Type Checker! (or compiler) Writing Proofs \rightarrow Writing programs to build values of a particular type Interactive Proof Assistants: Assist you in these "constructions".

Interactive Theorem Provers

A sample proof in Coq

≡ Basics.v			ដោ		≣ ProofView: Basics.v ×
1042	Theor	em mult 0 plus : forall n m : nat.			
1043	(0	+ n) * m = n * m.			n, m: nat
1044					
	int	tros n m.			
	rev	/rite -> plus_0_n.			
	ret	flexivity. Qed.			(1/1)
					m * (1 + n) = m * m
		rem mult_S_1 : forall n m : nat,			
	m =	= S n ->			
	m *	(1 + n) = m * m.			
	Proot				
<u>∖</u> 1054	int	tros n m H.			
	sin	npl.			
1056	rev	vrite -> H.			
	ret	flexivity.			
	Qed.				

Anurudh Peduri Automated Theorem Proving

Getting Started

Numerous free resources available online!

- Lean Natural Number Game by Kevin Buzzard: A gamified tutorial.
- Software Foundations: A collection of four textbooks on basics of theorem proving (using Coq).
- Lean Tutorial.

Thank You!

Anurudh Peduri Automated Theorem Proving

・ロト ・四ト ・ヨト ・ヨト