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Introduction

Basic Terminology

Optimization Problem

Let f : Rn → R be any cost function, and let fi : Rn → R and gi : Rn → R
be the constraint functions.

min
x∈S

f (x)

subject to fi (x) = 0, i = 1, · · · ,m
gi (x) ≤ 0, i = 1, · · · , n,

where S is the intersection of domains of all the functions.

This talk will be focused on uncontrained optimization problems such as
follows:

min
x∈Rn

f (x),

where f satisfies some special conditions.
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Introduction

Basic Terminology

Types of Minimizers

A point x∗ ∈ S is called the global minimizer if f (x∗) ≤ f (x) for all
x ∈ S.

A point x∗ ∈ S is called the local minimizer if there is a
neighborhood N ⊆ S of x∗ such that f (x∗) ≤ f (x) ∀x ∈ N .

A point x∗ ∈ S is called the strict local minimizer(also called as
strong local minimizer) if there is a neighborhood N ⊆ S of x∗ such
that f (x∗) < f (x) ∀x ∈ N , x 6= x∗.
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Introduction

Q - Rate of Convergence

Let {xk} be a sequence in Rn that converges to x∗.

The convergence is said to be Q-linear if there is a constant
r ∈ (0, 1) such that

‖xk+1 − x∗‖
‖xk − x∗‖

≤ r , for all k sufficiently large.

The convergence is said to be Q-superlinear if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0.

The convergence is said to be Q-quadratic if there is a positive
constant M, not necessarily less than 1, such that

‖xk+1 − x∗‖
‖xk − x∗‖2

≤ M, for all k sufficiently large.

Example: {1 + (0.5)k}, {1 + k−k}, {1 + (0.5)2
k} respectively.
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Optimality Conditions

Identifying Minimizers

First-Order Necessary Condition

If x∗ is a local minimizer and f is continuously differentiable in an open
neighborhood of x∗, then ∇f (x∗) = 0.

Remark: From the above condition notice that every local minimizer is a
stationary point(i.e, point at which gradient of f vanishes).

Second-Order Necessary Condition

If x∗ is a local minimizer and ∇2f is continuous in an open neighborhood
of x∗, then ∇f (x∗) = 0 and ∇2f (x∗) is positive semi-definite.

Second-Order Sufficient Condition

Suppose that ∇2f is continuous in an open neighborhood of x∗ and that
∇f (x∗) = 0 and ∇2f (x∗) is positive definite. Then x∗ is a strict local
minimizer of f .
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Optimality Conditions

Identifying Minimizers

Adding convexity to the picture yields the following results:

Optimality Conditions for convex problems

When f is convex, any local minimizer x∗ is a global minimizer of f . If in
addition f is differentiable, then any stationary point x∗ is a global
minimizer.

Goal of an Optimization Method

Given an initial point x0 ∈ Rn, iteratively find a sequence {xn} at each
step such that as the limit tends to infinity, some of the above mentioned
conditions of optimality are satisfied.

We now take a look at two broad classes of optimization methods.
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Optimization Methods

Classification of Optimization Methods

Line Search Methods

Trust-Region Methods
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Line Search Methods

Line Search Methods

Algorithm Prototype Line Search Methods

1: Pick an initial point x0
2: repeat
3: Pick a direction pk
4: Pick a step length αk > 0 in that direction
5: Update the solution. xk+1 ← xk + αkpk
6: until Convergence

Note: Steps 1,3,4 are non-trivial. Later we’ll see why step 1 is non-trivial.
Roughly speaking, we want to pick pk and αk such that f (xk+1) < f (xk)
except when xk is optimal. Such methods are called Descent Methods.
As −∇f (xk) is the steepest descent direction, we define pk to be a
descent direction if ∇f (xk)Tpk < 0.
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Line Search Methods

Step Length Selection

Given a descent direction pk , the ideal step length would be

α∗ = argmin
α>0

f (xk + αkpk).

Generally, we prefer inexact methods, where we try out a sequence of step
lengths until certain conditions are satisfied which guarantee optimality.
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Line Search Methods

Wolfe Conditions on step length αk

Define φ(αk) = f (xk + αkpk) and l(αk) = f (xk) + (c1∇f (xk)Tpk)αk ,
which is a linear function in αk with negative slope (c1∇f (xk)Tpk).

Armijo condition or sufficient decrease condition

f (xk + αkpk) ≤ f (xk) + c1αk∇f (xk)Tpk (or) φ(αk) ≤ l(αk)

Curvature condition

∇f (xk + αkpk)Tpk ≥ c2∇f (xk)Tpk (or) φ′(αk) ≥ c2φ
′(0)

where 0 < c1 < c2 < 1.
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Line Search Methods

Wolfe Conditions on step length αk

Theorem

Suppose that f : Rn → R is continuously differentiable. Let pk be a
descent direction at xk , and assume that f is bounded below along the ray
{xk + αpk : α > 0}. Then if 0 < c1 < c2 < 1, there exists intervals of step
lengths satisfying the Wolfe conditions.
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Line Search Methods

Descent Direction Selection

Let the angle between the steepest descent direction −∇f (xk) and pk be

θk , then cos θk =
−∇f (xk)Tpk
‖∇f (xk)‖‖pk‖

.

Theorem

Consider any iteration of the form xk + αkpk , where pk is a descent
direction and αk satisfies the Wolfe conditions. Suppose that f is bounded
below in Rn and that f is continuously differentiable in an open set N
containing the level set L ≡ {x : f (x) ≤ f (x0)}, where x0 is the initial
point. Assume also that the gradient ∇f is Lipschitz continuous on N , i.e,
there exists a constant L > 0 such that ‖∇f (x)−∇f (x̃)‖ ≤ L‖x − x̃‖, for
all x , x̃ ∈ N . Then,∑

k≥0
cos2θk‖∇f (xk)‖2 <∞ (or) lim

k→∞
cos2θk‖∇f (xk)‖2 = 0.
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Line Search Methods

Steepest Descent Method

Theorem

Suppose that f : Rn → R is twice continuously differentiable, and that the
iterates generated by steepest descent method (where pk = −∇f (xk))
with the exact line searches converges Q-linearly to a point x∗ where the
Hessian matrix ∇2f (x∗) is positive definite. Then

f (xk+1)− f (x∗) ≤
(
λn − λ1
λn + λ1

)2

[f (xk)− f (x∗)],

where λ1 ≤ · · · ≤ λn are the eigenvalues of ∇2f (x∗).
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Line Search Methods

Newton’s Method

The descent direction pNk ≡ −∇2f (xk)−1∇f (xk).

Theorem

Suppose that f : Rn → R is twice differentiable, and that the Hessian
∇2f (x) is Lipschitz continuous in a neighborhood of a solution x∗ at
which the second-order sufficient conditions hold. Consider the iteration
xk+1 = xk + pNk . Then

if the starting point x0 is sufficiently close to x∗, the sequence of
iterates converges to x∗.

the rate of convergence of {xk} is Q-quadratic; and

the sequence of gradient norms {∇f (xk)} converges Q-quadratically
to zero.
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