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Introduction

Basic Terminology

Optimization Problem

Let f : R” — R be any cost function, and let f; : R” — R and g; : R" - R
be the constraint functions.

] f
min ()
subject to fi(x)=0,i=1,---.m

gi(X)§07 i:17"'7n7

where S is the intersection of domains of all the functions.

This talk will be focused on uncontrained optimization problems such as
follows:

in
min f(x),

where f satisfies some special conditions.
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Introduction

Basic Terminology

Types of Minimizers
@ A point x* € S is called the global minimizer if f(x*) < f(x) for all
xeS.
@ A point x* € § is called the local minimizer if there is a
neighborhood N C S of x* such that f(x*) < f(x) Vx € NV.

@ A point x* € S is called the strict local minimizer(also called as
strong local minimizer) if there is a neighborhood N C S of x* such
that f(x*) < f(x) Vx € N, x # x*.
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Introduction

Q - Rate of Convergence

Let {xx} be a sequence in R" that converges to x*.

@ The convergence is said to be Q-linear if there is a constant
r € (0,1) such that

X, — x* ..

M < r, for all k sufficiently large.

[[xk — x*|]

@ The convergence is said to be Q-superlinear if

s = x|

lim =0.

k—oo [[xx — x*||

@ The convergence is said to be Q-quadratic if there is a positive
constant M, not necessarily less than 1, such that

< M, for all k sufficiently large.

Example: {1+ (0.5)%}, {1+ k~k}, {1+ (0.5)2"} respectively.
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|dentifying Minimizers

First-Order Necessary Condition

If x* is a local minimizer and f is continuously differentiable in an open
neighborhood of x*, then Vf(x*) = 0.

Remark: From the above condition notice that every local minimizer is a
stationary point(i.e, point at which gradient of f vanishes).
Second-Order Necessary Condition

If x* is a local minimizer and V?f is continuous in an open neighborhood
of x*, then Vf(x*) = 0 and V2f(x*) is positive semi-definite.

Second-Order Sufficient Condition

Suppose that V2f is continuous in an open neighborhood of x* and that
Vf(x*) =0 and V2f(x*) is positive definite. Then x* is a strict local
minimizer of f.
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|dentifying Minimizers

Adding convexity to the picture yields the following results:

Optimality Conditions for convex problems

When f is convex, any local minimizer x* is a global minimizer of f. If in
addition f is differentiable, then any stationary point x* is a global
minimizer.

Goal of an Optimization Method

Given an initial point xp € R", iteratively find a sequence {x,} at each
step such that as the limit tends to infinity, some of the above mentioned
conditions of optimality are satisfied.

We now take a look at two broad classes of optimization methods.

Jayadev Naram Optimization Methods 6 /15



Classification of Optimization Methods

@ Line Search Methods
@ Trust-Region Methods

Jayadev Naram Optimization Methods



Line Search Methods

Algorithm Prototype Line Search Methods

1: Pick an initial point xg

2: repeat

3 Pick a direction py

4: Pick a step length aj > 0 in that direction
5 Update the solution. xxy1 < Xk + i pk

6: until Convergence

Note: Steps 1,3,4 are non-trivial. Later we'll see why step 1 is non-trivial.

Roughly speaking, we want to pick px and ay such that f(xx1+1) < f(xk)
except when xi is optimal. Such methods are called Descent Methods.
As —Vf(xk) is the steepest descent direction, we define py to be a
descent direction if V£ (x;)" px < 0.
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Step Length Selection

Given a descent direction pg, the ideal step length would be

o™ = argmin f(xx + axpk)-
a>0

Generally, we prefer inexact methods, where we try out a sequence of step
lengths until certain conditions are satisfied which guarantee optimality.

Jayadev Naram Optimization Methods 9/



Wolfe Conditions on step length ay

Define ¢(ak) = f(xk + axpi) and I(ax) = F(xi) + (ca VF(xe) T pr)ouk,
which is a linear function in aj with negative slope (c1Vf(xk) " pk).

@ Armijo condition or sufficient decrease condition

f(x + arpr) < F(xe) + caaVE(xe) T pi (or) ¢lax) < I(ou)

@ Curvature condition

VF(xk + akpi) "o > 2V F(xk) T pic (or) ¢'(ak) > c2d'(0)

where 0 < ¢ < o < 1.
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Line Search Methods

Wolfe Conditions on step length ay

Theorem

Suppose that f : R" — R is continuously differentiable. Let p, be a
descent direction at xy, and assume that f is bounded below along the ray

{xk + apk : @ > 0}. Then if0 < c; < ca < 1, there exists intervals of step
lengths satisfying the Wolfe conditions.
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Line Search Methods

Descent Direction Selection

Let the angle between the steepest descent direction —Vf(xx) and px be
—V(x) " pr

O, th 0, = ———~~2 "=
ko EREM €05 Tk =T £ ) e

Theorem

Consider any iteration of the form x, + oy pk, where py is a descent
direction and «y satisfies the Wolfe conditions. Suppose that f is bounded
below in R" and that f is continuously differentiable in an open set N
containing the level set L = {x: f(x) < f(x0)}, where xo is the initial
point. Assume also that the gradient Vf is Lipschitz continuous on N, i.e,
there exists a constant L > 0 such that ||Vf(x) — Vf(X)| < L||x — X||, for
all x,X € N'. Then,

E cos®0k ||V (xk)||> < oo (or) inm cos® 0 ||V f (xx)||> = 0.
—00
k>0

v
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Line Search Methods

Steepest Descent Method

Theorem

Suppose that f : R" — R is twice continuously differentiable, and that the
iterates generated by steepest descent method (where py = —Vf(xk))
with the exact line searches converges Q-linearly to a point x* where the
Hessian matrix V2f(x*) is positive definite. Then

_ 2
o) = F7) < (F3t ) 1Fs) = L

where \; < --- <\, are the eigenvalues of V*f(x*).
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Newton's Method

The descent direction pl = —V2f(xc) "1V (x).
Theorem

Suppose that f : R" — R s twice differentiable, and that the Hessian
V2f(x) is Lipschitz continuous in a neighborhood of a solution x* at
which the second-order sufficient conditions hold. Consider the iteration
Xk+1 = Xk + p,’(v. Then
o if the starting point xqg is sufficiently close to x*, the sequence of
iterates converges to x*.

@ the rate of convergence of {xx} is Q-quadratic; and

@ the sequence of gradient norms {Vf(xx)} converges Q-quadratically
to zero.
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