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What is Optimisation
What is a Convex Optimisation
Why Convex Optimisation

What is Mathematical Optimisation

Optimisation is a common problem in various fields. Mathematical
optimisation is the problem where we try to minimise or maximise
the value of a function while satisfying some constraints.
The general optimisation problem is of the form -

minimise f0(x)

subject to: fi (x)≤ 0 i = 1...m

hi (x)= 0 i = 1...p

Optimisation is useful in many places like ML, Electronics,
Manufacturing .etc.
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Convex Function

Affine function - f (ax + (1− a)y) = af (x) + (1− a)f (y) A convex
function is one for which the epigraph is a convex set. Other
equivalent definitions are -

1 f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y)

2 f (y) ≥ f (x) +∇f (x)T (y − x)

3 ∇2f (x) ≥ 0
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What is Optimisation
What is a Convex Optimisation
Why Convex Optimisation

Convex Optimisation

An optimisation problem where the objective function, inequailty
constraints is convex and the equality constraints are affine is
called a convex optimisation problem.

minimise f0(x)

subject to: fi (x)≤ 0 i = 1...m

hi (x)= 0 i = 1...p

All fi are convex and hi are affine.
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Why Convex Optimisation

For convex functions -

Local optimality implies global optimality. Which makes the
convex objective much easier to solve.

Duality such as min-max relation and separation theorem
holds. (Not explained now)

Even though in practice most objective functions are non-convex,
convex optimisation still helps as -

Several non-convex functions can be converted into equivalent
convex functions. (’convexification’)

Many non-convex problems can be estimated or a bound can
be given by using convex functions.
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Extended Value Function
An Example of a Convex Function
What is Lagrange and the intuition behind it

Extended Value Function

It is often convenient to extend a convex function to all of Rn by
defining its value to be outside its domain. The extended value
function is defined as follows -

f̃ (x) =

{
f (x), x ∈ dom f

∞, x /∈ dom f

An extended value function of a convex function is convex. This
helps us to generalise the functions easily.
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Extended Value Function
An Example of a Convex Function
What is Lagrange and the intuition behind it

An Example

The pointwise maximum of a set of convex functions is convex.
Let f (x) = sum of k largest elements of a vector.
Then, the function f is convex. Why?

Arpan Dasgupta and Abhishek Mittal Convex Optimisations



Introduction
Tools to Use

An interesting example

Extended Value Function
An Example of a Convex Function
What is Lagrange and the intuition behind it

Lagrangian

The Lagrange dual function incorporates the problem constraints
into the problem statement by introducing additional terms into
the objective.
The Lagrange Dual function is defined as -
L(x , λ, ν) = f0(x) +

∑m
i=1 λi fi (x) +

∑p
i=1 νihi (x)

Where:
f0 is the objective
fi ’s are inequality constraints
hi ’s are equality constraints
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Extended Value Function
An Example of a Convex Function
What is Lagrange and the intuition behind it

Lagrange Dual Function

The Lagrange Dual Function is defined as :
g(λ, ν) = infx∈D L(x , λ, ν)
g is always concave even if f is non-convex.
Lower Bound Property - g(λ, ν) ≤ p∗

Where p∗ is the optimal value of function f.
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Formulating the problem mathematically
Role of convex opt in this non convex problem

Problem Statement

Assumption: A solver already exists for any kind of convex
optimisation problem

Partition n elements into 2 groups, where putting 2 elements in the
same group incurs a cost. We want to find the optimal/minimum
value for the cost incurred.
More formally, there exists a matrix C whose (i , j)th element tells
us the cost that would be incurred if the i th element and the j th

element are put in the same group.
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Formulating the problem mathematically
Role of convex opt in this non convex problem

Steps to mathematically formulate any optimisation
problem

Step 1: First define the optimisation variable

Step 2: Define the objective function
Step 3: Define the constraint functions both inequality and equality
Step 4: Mathematical Formulation of the optimisation problem
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Formulating the problem mathematically
Role of convex opt in this non convex problem

Defining the Optimisation Variable

The optimisation variable x must represent the group that each
element belongs to. i th component of the vector is the i th element
in the set. So we can choose any 2 set of values to represent group
1 and group 2 respectively.

Examples


1
−1
1
...
1

 or


0
1
1
...
0
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Formulating the problem mathematically
Role of convex opt in this non convex problem

Defining our Optimisation function

Input- vector x , information about the partition

Output - a scalar value that tells how much cost is incurred for this
particular partition

For one element xi
N∑
j=1

xjCij

Total =
1

2

N∑
i=1

N∑
j=1

xixjCij

Matrix Notation
1

2
xTCx

xTWx

Quadratic form.
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Quadratic forms

ax2 + 2bxy + cy2

[
x y

][a b
b c

][
x
y

]
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Role of convex opt in this non convex problem

Defining our constraints

x2i = 1 ∀i = 1, 2, ..., n
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Formulating the problem mathematically
Role of convex opt in this non convex problem

Mathematical Formulation of the Problem

minimise xTWx

subject to: x2i = 1 i = 1...n

Objective function is a quadratic form.
Convex ⇐⇒ W � 0
Problem is non convex
Objective function-may or may not be convex
Constraints - Not affine functions
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Formulating the problem mathematically
Role of convex opt in this non convex problem

Finding the dual function

Lagrange function: The penalty function for violating constraints

L(x , λ, ν) = f0(x) + ΣN
i=1λi fi (x) + ΣN

i=1νihi (x)

fi (x) inequality constraints

hi (x) equality constraints

L(x , ν) = f0(x) + ΣN
i=1νihi (x)

where hi (x) = x2i − 1

the dual function

g(ν) = infxL(x , ν)
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Maths

g(ν) = infx(xTWx + ΣN
i=1νi (x

2
i − 1))

g(ν) = infx(xTWx + ΣN
i=1νix

2
i )− 1Tν

Now ΣN
i=1νix

2
i = xTdiag(ν)x

x=

1
2
3


diag(x)=

1 0 0
0 2 0
0 0 3
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Role of convex opt in this non convex problem

Maths contd.

g(ν) = infx(xTWx + xTdiag(ν)x)− 1Tν

g(ν) = infxx
T (W + diag(ν))x − 1Tν

—
Now if W + diag(ν) is positive semi definite then the minimum
value of this expression xT (W + diag(ν))x is 0 else it is − inf
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Role of convex opt in this non convex problem

Maths contd.

Proof:
Let there be a matrix A which is not Positive semi definite then

There is some x such that xTAx ≤ a where a is some finite
negative number
Multiply both sides by a arbitrary positive constant k2

(kx)TA(kx) ≤ k2a

Take k to infinity
Hence proved that minimum value of xTAx is −∞
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Formulating the problem mathematically
Role of convex opt in this non convex problem

Maths contd.

g(ν) =

{
−1Tν ,W + diag(ν) � 0
−∞ , otherwise
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Formulating the problem mathematically
Role of convex opt in this non convex problem

Using the lower bound property

Lower bound property: g(λ, ν) ≤ p∗ if λ � 0 where p∗ is the
optimal value of the objective function.
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Formulating the problem mathematically
Role of convex opt in this non convex problem

Interesting Part

Maximising g(ν) is same as minimizing −g(ν).

−g(ν) =

{
1Tν ,W + diag(ν) � 0
∞ , otherwise

Voila

This is a clear convex optimisation problem which needs to be
minimised
Dump it in the solver and get the maximum lower bound
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An interesting example

Formulating the problem mathematically
Role of convex opt in this non convex problem

Proof of why its convex

Domain : Linear combination of positive semi definite matrices

Method 1: ∇(−g(ν)) = 1 and ∇2(−g(ν)) = 0
Method 2: Sum of r largest components of a vector is a convex
function.
Extended Value theorem
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Formulating the problem mathematically
Role of convex opt in this non convex problem

Is the dual function always concave

Coincidence ?

g(ν) = inf
x
L(x , λ, ν) = f0(x) +

∑m
i=1 λi fi (x) +

∑p
i=1 νihi (x)

Pointwise infimum of a family of affine functions.

For each value of x: Linear combination of λ and ν and a constant

Arpan Dasgupta and Abhishek Mittal Convex Optimisations



Introduction
Tools to Use

An interesting example

Formulating the problem mathematically
Role of convex opt in this non convex problem

Is the dual function always concave

Coincidence ?

g(ν) = inf
x
L(x , λ, ν) = f0(x) +

∑m
i=1 λi fi (x) +

∑p
i=1 νihi (x)

Pointwise infimum of a family of affine functions.

For each value of x: Linear combination of λ and ν and a constant

Arpan Dasgupta and Abhishek Mittal Convex Optimisations



Introduction
Tools to Use

An interesting example

Formulating the problem mathematically
Role of convex opt in this non convex problem

Is the dual function always concave

Coincidence ?

g(ν) = inf
x
L(x , λ, ν) = f0(x) +

∑m
i=1 λi fi (x) +

∑p
i=1 νihi (x)

Pointwise infimum of a family of affine functions.

For each value of x: Linear combination of λ and ν and a constant

Arpan Dasgupta and Abhishek Mittal Convex Optimisations



Introduction
Tools to Use

An interesting example

Formulating the problem mathematically
Role of convex opt in this non convex problem

Is the dual function always concave

Coincidence ?

g(ν) = inf
x
L(x , λ, ν) = f0(x) +

∑m
i=1 λi fi (x) +

∑p
i=1 νihi (x)

Pointwise infimum of a family of affine functions.

For each value of x: Linear combination of λ and ν and a constant

Arpan Dasgupta and Abhishek Mittal Convex Optimisations



Introduction
Tools to Use

An interesting example

Formulating the problem mathematically
Role of convex opt in this non convex problem

Random lower bound

W + diag(ν) � 0

ν = −λmin(W )1

W − λminI � 0

where I is the Identity matrix

WKT λmin = inf
x

xTAx
xT x

To prove W − λminI � 0

xT (W − λminI)x ≥ 0 ∀x

Rearranging we get

xTWx ≥ λmin‖x‖2

λmin ≤ xTWx
‖x‖2

p∗ ≥ nλmin
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Introduction
Tools to Use

An interesting example

Formulating the problem mathematically
Role of convex opt in this non convex problem

Alternate Approach

New constraints
∑N

i=1 x
2
i = n.

xT x = n

More loose as xi can take decimal values also.

Directly dump into a quadratic minimizer with norm constraint
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