

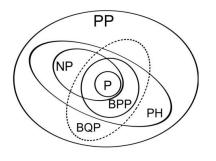
Utkarsh

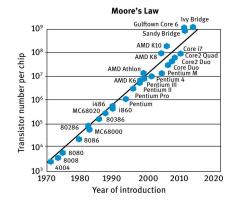
Center for Computational Natural Sciences and Bioinformatics, IIIT-Hyderabad Theoretical Quantum Physics Laboratory, RIKEN

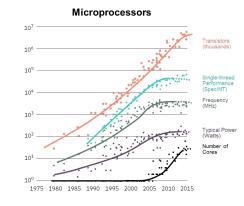
About Me

B-Tech (Hons.) in CS & MS by Research in CNS
 Advisor - Professor Harjinder Singh
 Center for Computational Natural Sciences and Bioinformatics,
 IIIT-Hyderabad

- □ Quantum Compute Researcher, QpiAITM India Pvt. Ltd. Developing a full software stack and algorithms for their CMOS based quantum hardware
- □ Research Interests → Quantum Biology, Quantum Chemistry, Quantum Optimizations, Quantum Machine Learning
- □ Research Work → Simulation, Development and Applications of NISQ Algorithms


Utkarsh


When I finally understand one equation in a QC paper

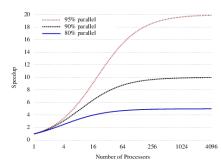


Me working on a problem during the quantum winters

Limitations of Classical Computers

Fundamental limits of computability

- Complexity Classes
- P, NP, NPC, BQP, PSPACE ...
- Bounded-Error Quantum Polynomial

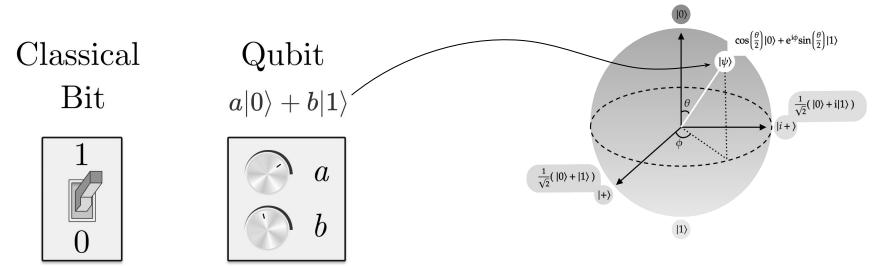

Limits of miniaturization

- Quantum effects in electronics
- Economical limits over number of transistors inter-transistor spacing

Energy considerations

- Transistor scaling: heat
- Extreme energy consumptions
- Example: AI Model Training

Amdahl's law

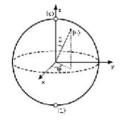


Limits of Parallelization

• Limit to the speedup gained by running part of computation in parallel.

New model of computation? Analog computing, neuromorphic computing, quantum computing...?

Quantum Computation


If we can control individual quantum systems We can use them as computational elements The state of a qubit is mapped to a point on the surface of Bloch sphere

- $\circ a \in C$, $b \in C$, $|a|^2 + |b|^2 = 1$
- a, b are probability amplitudes (can be negative)
- $P(|0\rangle) = |a|^2$ and $P(|1\rangle) = |b|^2$

Superposition, Interference, Entanglement, Measurement

The feature of a quantum system whereby it exists in several separate quantum states at the same time.

$$|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle \qquad \qquad |\alpha|^2 + |\beta|^2 = 1$$

An individual particle can cross its own trajectory and interfere with the direction of its path.

$$A(|0\rangle + |1\rangle) = |0\rangle$$

$$|\Psi\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \quad H|\Psi\rangle = \frac{H|0\rangle + H|1\rangle}{\sqrt{2}} = \frac{|0\rangle + |1\rangle + |0\rangle - |1\rangle}{2} = |0\rangle$$

$$destructive interference$$

$$destructive interference$$

Two particles become inextricably linked, regardless of how far apart they are.

$$|\Psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Measurements are destructive

electron beam gu

$$\hat{A}|\Psi\rangle = a|\Psi\rangle$$

Three types of quantum computer

1. Digital quantum computers

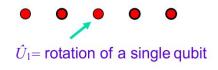
- The holy grail a general-purpose Universal quantum computer
- Is extremely difficult to build
- **NISQ hardware** will not be fault tolerant is it useful?

2. Quantum Annealer

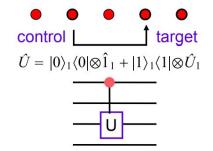
- Solves a Hamiltonian ground-state problem
- Quantum speedups are currently a topic of scientific debate
- Easiest hardware to build if noise/temperature can be tolerated

3. Analog Simulators

- Analog (unlike digital) computers simulate/emulate the equations of a physical system directly using controlled quantum states.
- Applications lie in quantum chemistry, materials science
- Exist in many laboratories



The DiVincenzo Criteria


- A scalable physical system with well-characterized qubits
- **Initialization** to a pure state, such as $|000...\rangle$
- **Decoherence times** longer than gate operation times
- A "**universal**" set of quantum gates
- **Readout**: a qubit-specific measurement capability
- Interconversion of stationary and flying qubits

• Faithful transmission of flying qubits between specified locations

D. P. DiVincenzo "The Physical Implementation of Quantum Computation", Fortschritte der Physik 48, p. 771 (2000) arXiv:0002077

Physical Implementation of Qubits

Cohere qubit

Highest fidelity logic ga

Ma qubits er per log

	Current Capacitors Microwaves	Laser Electron	Microwaves	Time	Vacancy N C
rence time for a single t superposition state	Superconducting loops A resistance-free current oscillates back and forth around a circuit loop. An injected microwave signal excites the current into super- position states.	Trapped ions Electrically charged atoms, or ions, have quantum energies that depend on the location of electrons. Tuned lasers cool and trap the ions, and put them in superposition states.	Silicon quantum dots These "artificial atoms" are made by adding an electron to a small piece of pure silicon. Microwaves control the electron's quantum state.	Topological qubits Quasiparticles can be seen in the behavior of electrons channeled through semi- conductor structures. Their braided paths can encode quantum information.	Diamond vacancies A nitrogen atom and a vacancy add an electron to a diamond lattice. Its quantum spin state, along with those of nearby carbon nuclei, can be controlled with light.
st reported gate y for two-qubit gate operations.	Longevity (seconds) 0.00005	>1000	0.03	N/A	10
	Logic success rate 99.4%	99.9%	~99%	N/A	99.2%
	Number entangled 9	14	2	N/A	6
laximum number of entangled and capable of erforming two-qubit ogic gate operations	 Pros Fast working. Build on existing semiconductor industry. Cons Collapse easily and must be kept cold. 	Very stable. Highest achieved gate fidelities. Slow operation. Many lasers are needed.	Stable. Build on existing semiconductor industry. Only a few entangled. Must be kept cold.	Greatly reduce errors. Existence not yet confirmed.	Can operate at room temperature. Difficult to entangle.

8

The Noisy Era - I

REPORT

Quantum computational advantage using photons

B Han-Sen Zhong^{1,2,*}, G Hui Wang^{1,2,*}, Yu-Hao Deng^{1,2,*}, Ming-Cheng Chen^{1,2,*}, Li-Chao Peng^{1,2}, Yi-Han Luo^{1,...}
+ See all authors and affiliations

Science 18 Dec 2020: Vol. 370, Issue 6523, pp. 1460-1463 DOI: 10.1126/science.abe8770

Article Published: 23 October 2019

Quantum supremacy using a programmable superconducting processor

Frank Arute, Kunal Arya, [...] John M. Martinis 🖂

 Nature
 574, 505–510(2019)
 Cite this article

 791k
 Accesses
 499
 Citations
 6047
 Altmetric
 Metrics

Livemint

Why India is falling behind in the Y2Q race

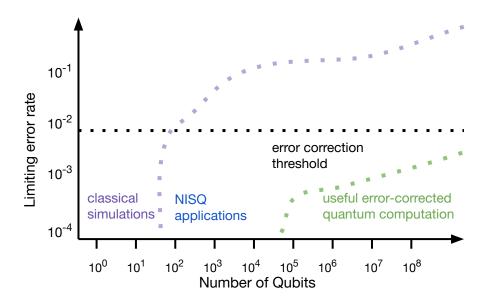
To that end, in 2019, DST launched Quantum Information Science and Technology (QuEST), a programme wherein the government will invest ... Jan 15, 2020

The Indian Express

Honeywell makes world's fastest Quantum Computer with quantum volume of 64

The quantum volume is a measurement that takes into account the number of quantum bits (or qubits) of a machine as well as their connectivity ... Jun 21, 2020

The Noisy Era - II


The Era of Noisy qubits a.k.a the Noisy Intermediate Scale Quantum (NISQ) Era -

- 1. A term coined by Prof. John Preskill
- 2. Limited numbers of good and robust qubits.
- 3. Limited **connectivity** of qubits.
- 4. Imperfect **control** over qubits.
- 5. **Coherent** and **incoherent** errors that limit quantum circuit depth.
- 6. Limited/Negligible quantum error correction.
- 7. Limited Gates can be applied (low circuit depth)
- 8. Speculated speedups.

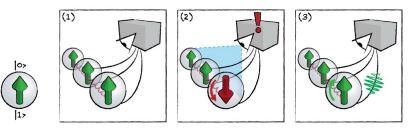
John Preskill, Quantum Computing in the NISQ era and beyond, arXiv:1801.00862

Credits - Graphic adapted from Daniel Gottesman's slides on Quantum Error Correction.

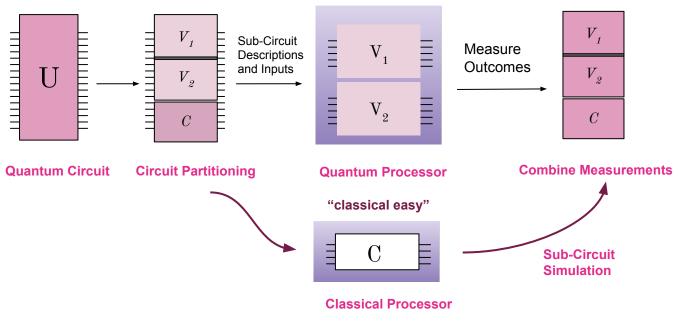
Understanding Preskill's Vision for NISQ Era

- 1. Opportunity to **experiment/test** NISQ computing
- 2. Unknown if speed-up for problems of broad interest will happen
- 3. Try hybrid quantum-classical algorithms for classical & quantum optimization
- 4. Experimental quantum computers will accelerate quantum algorithms/heuristic development
- 5. Design algorithms and their applications with **noise resilience** in mind
- 6. Quantum computers could be better at classically hard problems such as simulating dynamics of highly entangled many-particle quantum systems.
- 7. Focus on building quantum hardware with low gate-error rates
- 8. Near-term quantum platforms leverages payoff from future quantum computers.
- 9. Transformative quantum technologies likely must be fault-tolerant.

Quantum Error Correction (QEC)

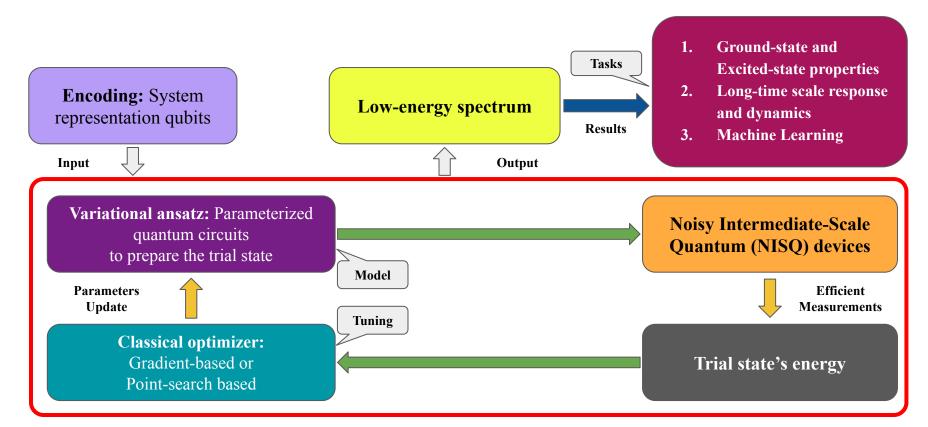

Qubits: Imperfect operations or interaction with environment **Ideal qubits, physical qubits, logical qubits!**

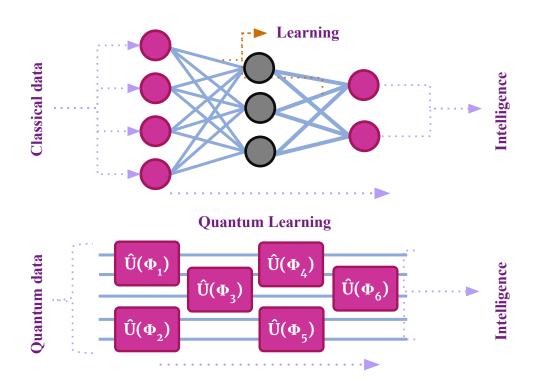
- **1.** Bit Flip \rightarrow Interchanges $|0\rangle$ and $|1\rangle$.
- 2. **Phase Flip** \rightarrow Inverts the relative phase of $|0\rangle$ and $|1\rangle$. No classical analogue!
- **3.** Gate-Error \rightarrow Imperfections is logic gate operations.
- 4. **Decoherence** \rightarrow Information about system is lost as it interacts with the Environment.
- **5.** Read-out Error \rightarrow Depolarization of qubits during readout.


Quantum Error Correction: Converts physical qubits into logical qubits (noise-resilient) Fault-tolerant Universal Quantum Computer - proven exponential advantage Threshold Theorem: scalability of quantum computers

Error Mitigation: Reduce noise in the system by hardware-specific insight.

Possible Solution: Since Quantum Error Correction requires high qubit-overhead, somehow make use of quantum processor limited. Use it as an accelerator.


Hybrid Quantum-Classical Architecture


"quantum easy"

n-qubit computations using n-k qubits and additional classical resources

Variational Quantum Eigensolver (VQE)

Hold on! This Feels Very Familiar

Modelling of Hybrid Neural Networks: Integrating Quantum and Classical Nodes data processing device

you see that sign there that says QRAM might not be feasible

The QML Community

Disregard that, Frank. It's a bunch of liberal bullshit.

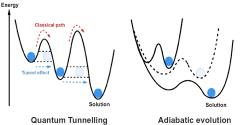
Quantum Optimization

• The natural description of a quantum optimization problem is to find the ground state of a N-body Ising Hamiltonian:

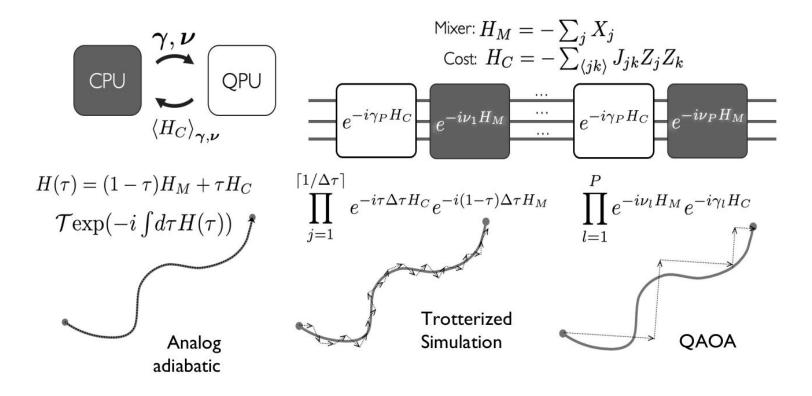
$$H^{\text{Ising}}(\psi) = \sum_{i} h_{i}\psi_{i} + \sum_{\langle i,j \rangle} J_{ij}\psi_{i}\psi_{j} + \sum_{\langle i,j,k \rangle} K_{ijk}\psi_{i}\psi_{j}\psi_{k} + \dots \quad \text{(The sum in brackets denote nearest neighbors)}$$

ext. mag. 2-body 3-body

• Efficient locality reduction of H^{Ising} to a 2-local Hamiltonian can be seen as a QUBO:


• Adiabatic evolution \rightarrow Initiate a spin-up state in X, which is fully entangled in Z and adiabatically evolve in s

• Adiabatic condition depends on energy gap of time-dependent Hammonian. J^{-1}


$$T \ge \mathcal{O}\left(\frac{||H^{\text{init}} - H^{\text{problem}}||^2}{\epsilon \min_{s \in [0,1]} \Delta(H(s))^3}\right)$$

Approximate Quantum Optimization involves breaking this condition.

• Adiabatic quantum computing can solve problems that can be mapped to the Ising Model.

Quantum Approximate Optimization Algorithm

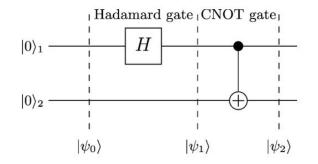
Quantum Software

1. Quantum instruction sets

- OpenQASM
- o QUIL
- BlackBird

2. Pulse-control instruction sets

- QUIL-T
- Open Pulse
- Q-CTRL


3. Quantum Programming Languages

- QCL
- Q#
- o Silq
- Quipper
- Many More

Quantum Software Development Kits (SDKs)

- 1. Ocean \rightarrow DWAVE
- 2. ProjectQ \rightarrow Benjamin Group
- 3. XACC \rightarrow LANL
- 4. Cirq, TensorFlow Quantum \rightarrow Google
- 5. Forest \rightarrow Riggeti
- 6. Orchestra \rightarrow Zapata
- 7. QISKIT \rightarrow IBM
- 8. Akaash \rightarrow CDAC
- 9. $t|ket> \rightarrow CQC$
- 10. Strawberry Fields, Pennylane \rightarrow Xanadu
- 11. $QDK \rightarrow Microsoft$

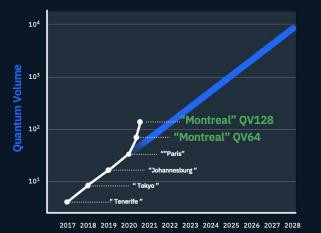
Naive Example

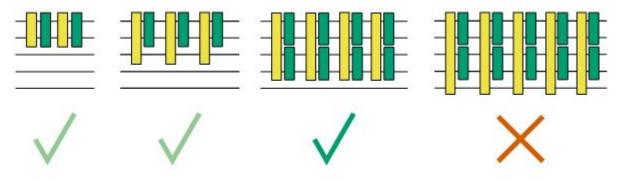
1 # Importing module for writing Quantum Programs ² from pyquil.quil import Program ³ from pyquil.gates import X, Y, Z, H, CNOT $_4$ # Create a connection to the QVM from pyquil.api import QVMConnection 5 $_{6}$ qvm = QVMConnection() 7 # Initialize Program p = Program(I(0), I(1))9 # Add instructions $_{10} \# H(0) - Hadamard on Oth qubit.$ 11 # CNOT(0, 1) - Target - 1st qubit 12 p.inst(H(0), CNOT(0, 1)) *#* Now index of Bell state needed 13 14 num = index #Replace it by int if index /2 >= 1: 15 p.inst(Z(1))16 if index%2 == 1: 17 p.inst(X(1))18 print(p) #Print's P and inst. applied 19 print(qvm.wavefunction(p)) 20 1 H 02 CNOT 0 1 3 Z 1 4 X 1 (0.7071067812+0j)|01> + (0.7071067812+0j)|10>5

Quantum Compilation

Assume, $|\Psi\rangle$ is our quantum state, C is our classical state, G is our set of static gates, G` is our set of parametric gates, P is a sequence of instructions comprising our program, and κ is where we are in the program. Then, we define $M = (|\Psi\rangle, C, G, G', P, \kappa)$ as a Quantum Abstract Machine.

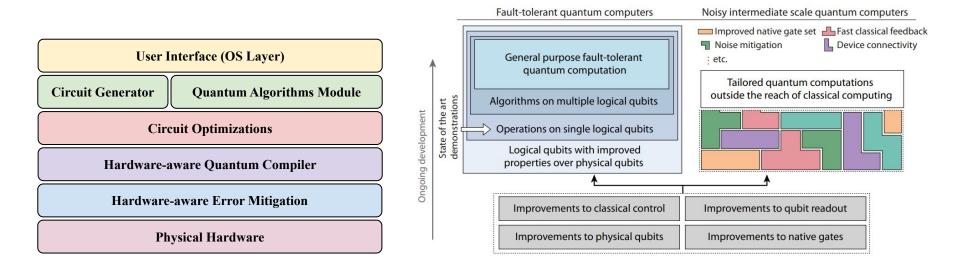
Goal of quantum compilation
$$\rightarrow$$
 $M_{\text{source}} \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_3} \cdots \xrightarrow{f_n} M_{\text{target.}}$ Optimized for the hardware


- **Decomposition** \rightarrow Decompose all the higher order gates in the native bases gates. Then use 1. algebraic identities, matrix-factorization methods or the Solovay–Kitaev algorithm.
- **Routing** \rightarrow Perform Qubit Allocation and efficient Qubit Movement using minimal number of 2. SWAP gates.
- Approximate Compilation \rightarrow Estimate the total amount of error (using $||E_i|| \le \epsilon$) for executing 3 a series of gates computing U, and replace it with some other approximate series of gates computing U' which is contained in $\Pi_i(U_i + E_i)$.


Benchmarking - Quantum Volume

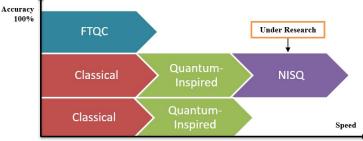
Quantum Volume V_0 for n-qubit quantum processor -

 $\log_2(V_Q) = \operatorname{argmax}_m \min(m, d(m))$ Where $m \le n$ is number of qubits and d(m) is the number of qubits in the largest square circuit for which we reliably sample output with a probability $> \frac{2}{3}$

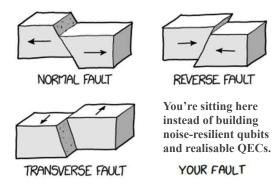

Example - Look at the following processor with $\log_2(V_0) = 4$

Quantum Stack

Credits - Superconducting Qubits: Current State of Play arXiv:1905.13641



Path towards fault-tolerant quantum error-corrected quantum computers (left) as well as noisy intermediate scale quantum computing (right).


Quantum-Inspired Algorithms

- Powering-up classical computations
 - Concept from quantum physics, and sampling/query-access strategies
 - Results in probabilistic algorithms (with some specialized hardware)
 - > Example: Annealing (AQC), Replica Exchange, Stochastic Neurons
- De-quantized Algorithms
 - Classical algorithms which proves their corresponding
 - > quantum variants don't give exponential speedups
- Examples
 - \circ Quantum-inspired evolutionary algorithms \rightarrow
 - \circ Quantum-inspired algorithms for linear algebra \rightarrow
 - QIA for recommendation systems (Tang),
 - > QIA for PCA and supervised clustering (Tang),
 - > QIA for solving low-rank linear systems (Chia, Lin, Wang)
 - \circ Quantum-inspired optimization algorithms \rightarrow Ising Computing

Types of Geologic Faults

Thank You! *Questions?*