PCPs and Hardness of Approximation

Aditya Morolia

January 30, 2021

Aditya Morolia PCPs and Hardness of Approximation

Outline

@ Sectting up the definitions

© PCP Theorems

© Proof of the PCP Theorem

e Gap amplification - Proof sketch

© Alphabet Reduction - Proof sketch

Aditya Morolia PCPs and Hardness of Approximation

Setting up the definitions

Setting up the definitions

Aditya Morolia PCPs and Hardness of Approximation

Setting up the definitions

Revisiting NP

A language L is said to be in NP if there is a poly-time Turing
machine V' (“verifier") that, given input x, checks certificates (or
membership proofs) to the effect that x € L. This means,

xel = Irst. VT(x)=1
x¢lL = Vr VT(x)=0

where V™ denotes “a verifier with access to certificate 7"

Aditya Morolia PCPs and Hardness of Approximation

Setting up the definitions

Probabilistically Checkable Proofs

Consider some changes in previous notion. Let’s say the verifier
@ is probabilistic
@ has random access to to the proof string 7.

This becomes possible after allowing queries using a special
address tape which allows random access. Queries to retrieve a
random bit of the proof string.

Aditya Morolia PCPs and Hardness of Approximation

Setting up the definitions

Probabilistically Checkable Proofs

proofew | | | [[[[[[T]]]

Verifier

Input: x in {0,1}"
r(n) coins

Aditya Morolia PCPs and Hardness of Approximation

Setting up the definitions

Some Definition

Verifiers can be adaptive and non-adaptive.

Non-Adaptive Verifier

A nonadaptive verifier selects its queries based only on its input
and random tape.

Adaptive Verifier

An adaptive verifier can in addition rely upon bits it has already
queried in 7 to select its next queries.

Aditya Morolia PCPs and Hardness of Approximation

Setting up the definitions

(r, g)-verifier

(r, q)-verifier

Let L be a language and g, r : N +— N. We say that L has an
(r(n), g(n))-verifier if there's a polynomial-time probabilistic
algorithm V satisfying:

e Efficiency: On input a string x € {0,1}"” and given random
access to a string m € {0, 1}* (which we call the proof), V
uses at most r(n) random coins and makes at most q(n)
non-adaptive queries to locations of 7. Then it outputs
“1" (for “accept”) or “0" (for “reject”).

Aditya Morolia PCPs and Hardness of Approximation

Setting up the definitions

(r, g)-verifier — Continue

(r, q)-verifier
e Completeness: If x € L then there exists a proof = € {0,1}*
such that Pr[V™(x) = 1] = 1. We call 7 the correct proof for
X.
e Soundness: If x ¢ L then for every proof m € {0,1}%,
PriV™(x) =1] <1/2.

Aditya Morolia PCPs and Hardness of Approximation

Setting up the definitions

PCPs — an example

The language GNI of pairs of non-isomorphic graphs is in PCP(poly(n),1). Say the input
for GNI is (Gp, G1), where G, G1 have both n nodes. The verifier expects 7 to contain, for
each labeled graph H with n nodes, a bit 7[H] € {0,1} corresponding to whether H = Gp or
H = Gy (n[H] can be arbitrary if neither case holds). In other words, 7 is an (exponentially
long) array of bits indexed by the (adjacency matrix representations of) all possible n-vertex
graphs.

The verifier picks b € {0,1} at random and a random permutation. She applies the permuta-
tion to the vertices of Gy, to obtain an isomorphic graph, H. She queries the corresponding
bit of 7 and accepts iff the bit is b.

If Gy # G, then clearly a proof 7 can be constructed which makes the verifier accept with
probability 1. If G; = G2, then the probability that any 7 makes the verifier accept is at
most 1/2.

Aditya Morolia PCPs

Hardness of Approximation

Setting up the definitions

Constraint satisfaction problem

Let g, W € N. A gCSPy instance ¢ is a collection of functions
®1,...¢m (called constraints) such that each

¢i{0...W —1}" — {0,1} such that each function ¢; depends
on at most g of its input locations. That is,

Vie [m|3j,...Jg€n,f:{0...W—1}9 — {0,1} such that
¢i(u) = f(up,...u)Vue{0... W —1}"

Denote the maximum fraction of constraints satisfied by any

ZTii(“))_

assignment u as val(¢) = max, (

Aditya Morolia PCPs and Hardness of Approximation

Setting up the definitions

Gap Problems - p-GAP3SAT

Let p € {0,1}. The p-GAP-3SAT problem is to determine, given a
3CNF formula ¢ whether:

@ ¢ is satisfiable, in which case we say ¢ is a YES instance of
p-GAP-3SAT.

e val(¢) < p, in which case we say ¢ is a NO instance of
p-GAP-3SAT.

Aditya Morolia PCPs and Hardness of Approximation

Setting up the definitions

Expander Graphs

Theorem

Let G = (V, E) be a A-expander graph for some A € (0,1). Let S
be a subset of V with |S| = | V| for some 5 € (0,1). Let
(Xi,...X) be a tuple of random variables denoting the vertices of
a uniformly chosen (/ — 1)-step path in G. Then,

(B =20k < Pr[ViepXi € S < (B + 2X\)

Aditya Morolia PCPs and Hardness of Approximation

Setting up the definitions

Walsh Hadamard Code

For two strings x,y € {0,1}", define x ® y to be the number
>-% 1 xiyi(mod 2). The Walsh-Hadamard code is the function
WH : {0,1}" + {0,1}?" that maps a string x € {0,1}" into the
string z € {0,1}2" (a truth table of the function.)

Aditya Morolia PCPs and Hardness of Approximation

PCP Theorems

PCP Theorems

Aditya Morolia PCPs and Hardness of Approximation

PCP Theorems

PCP Theorem

PCP Theorem

NP = PCP(log n,1)

PCP(r(n), q(n)) € NTIME(2°¢(M)q(n))

PCP Theorem

dg € N, p € {0,1} such that p-GAP-gCSP is NP-hard

Aditya Morolia PCPs and Hardness of Approximation

PCP Theorems

Equivalence of the two definitions

Theorem 18.2 implies Theorem 18.13. Assume that NP C PCP(logn,1). We will show
that 1/2-GAP ¢qCSP is NP-hard for some constant ¢. It is enough to reduce a single NP-complete
language such as 3SAT to 1/2-GAP ¢CSP for some constant ¢. Under our assumption, 3SAT has a
PCP system in which the verifier V' makes a constant number of queries, which we denote by g,
and uses c¢logn random coins for some constant ¢. Given every input and r € {0, l}rlng", define
Ve, to be the function that on input a proof 7 outputs 1 if the verifier will accept the proof = on
input 2 and coins 7. Note that V;, depends on at most ¢ locations. Thus for every « € {0,1}", the
collection ¢ = {\/I_r}re{u)l}glOg «» is a polynomial-sized ¢gCSP instance. Furthermore, since V' runs in
polynomial-time, the transformation of = to ¢ can also be carried out in polynomial-time. By the
completeness and soundness of the PCP system, if 2 € 3SAT then ¢ will satisfy val(p) = 1, while
if & ¢ 3SAT then ¢ will satisfy val(p) < 1/2. B

Aditya Morolia PCPs

Hardness of Approximation

PCP Theorems

Equivalence of the two definitions

Theorem 18.13 implies Theorem 18.2. Suppose that p-GAP ¢CSP is NP-hard for some con-
stants ¢,p < 1. Then this easily translates into a PCP system with ¢ queries, p soundness and
logarithmic randomness for any language L: given an input z, the verifier will run the reduction
f(x) to obtain a ¢CSP instance ¢ = {p;} . It will expect the proof 7 to be an assignment to the
variables of ¢, which it will verify by choosing a random i € [m] and checking that ¢; is satisfied
(by making ¢ queries). Clearly, if 2 € L then the verifier will accept with probability 1, while if
x ¢ L it will accept with probability at most p. The soundness can be boosted to 1/2 at the expense
of a constant factor in the randomness and number of queries (see Exercise 1). B

Hardness of Approximation

Aditya Morolia PCPs

PCP Theorems

Equivalence of the two definitions

PCP verifier (V) <+ CSP instance (¢)

PCP proof () > Assignment to variables u
Length of proof <> Number of variables (n)
Number of queries (q) <> Arity of constraints (q)

Number of random bits (r) <> Logarithm of number of
constraints (log m)

@ Soundness parameter <> Maximum of val(¢) for a NO
instance

e NP C PCP(logn, 1) ++ p-GAPqCSP is NP-hard

Aditya Morolia PCPs and Hardness of Approximation

PCP Theorems

Corollary

There exists some constant p < 1 such that if there is a
polynomial-time p-approximation algorithm for MAX 3SAT then P
= NP.

Aditya Morolia PCPs and Hardness of Approximation

PCP Theorems

Gap Producing Reductions

To prove the above corollary for some fixed p < 1, it suffices to
give a polynomial-time reduction f that maps a 3CNF formula to
another 3CNF formula such that:

e p€3SAT = val(f(¢)) =1
o p ¢ 3SAT = val(f(¢)) <p

Aditya Morolia PCPs and Hardness of Approximation

PCP Theorems

One Interesting Result

NP C PCP(poly(n),1)

Aditya Morolia PCPs and Hardness of Approximation

Proof of the PCP Theorem

Proof of the PCP Theorem

Aditya Morolia PCPs and Hardness of Approximation

Proof of the PCP Theorem

PCP Theorem
dg € N, p € {0,1} such that p-GAP-gCSP is NP-hard

Proof idea: Let p =1 — €. Since the number of satisfied
constraints is always a whole number, if ¢ is unsatisfiable then
val(¢) <1— L. Hence, the gap problem (1 — L)-GAP 3CSP is a
generalization of 3SAT and is NP hard. The idea behind the proof
is to start with this observation, and iteratively show that

(1 — €)-GAPqCSP is NP-hard for larger and larger values of ¢, until
€ is as large as some absolute constant independent of m. This is
formalized in the following lemma.

Aditya Morolia PCPs and Hardness of Approximation

Proof of the PCP Theorem

To formalise the idea from the previous slide, we define a new
reduction as follows:

CL Reduction

A function f mapping CSP instances to a CSP instances is a CL
reduction if it is polynomial time computable and for every CSP
instance ¢ with m constraints and satisfies:

e Completeness: ¢ is satisfiable = f(¢) is satisfiable

e Linear Blowup: f(¢) has at most Cm constraints and
alphabet W, where C, W can depend on the arity and the
alphabet size of ¢ (but not on the number of constraints or
variables).

Aditya Morolia PCPs and Hardness of Approximation

Proof of the PCP Theorem

PCP Main Lemma

dgo > 3,€0 > 0 and a CL-reduction f such that for every qoCSP
instance ¢ on binary alphabet, and every € < €y, 1) = f(¢) is a
qoCSP over a binary alphabet such that

val(¢) <1—e = val(yp) <1—2€

Aditya Morolia PCPs and Hardness of Approximation

Proof of the PCP Theorem

PCP Theorem from the PCP main lemma

@ We can reduce the NP-hard problem goCSP to p-GAP-qoCSP

@ The idea is to use the CL reduction repeatedly and double the
gap in each iteration.

@ if ¢ is the go-CSP instance with m constraints, then as
observed before, if ¢ is satisfiable, val(¢)) = 1, otherwise
val(¢) <1-— % We can use the gap amplification procedure
to amplify this gap (if it exists) from % to
val(1)) < min{2ep,1 — 2'°8™/m} = 1 — 2¢ by applying this
log m times.

@ That is, From the above lemma, the size of ¥ will blow up
polylogarithmically in m. And hence the PCP theorem is
proved.

Aditya Morolia PCPs and Hardness of Approximation

Proof of the PCP Theorem

Gap amplification and Alphabet reduction

Gap amplification

For every | € N, there exists a CL-reduction g; such that for every
CSP instance ¢ with binary alphabet, the instance ¥ = gj(¢) has
has arity only 2 (but over a non-binary alphabet) and satisfies:

val(p) <1—€ = val(y)) <1-—le

for every € < €y where ¢p > 0 is a number depending only on / and
the arity g of the original instance ¢.

Aditya Morolia PCPs and Hardness of Approximation

Proof of the PCP Theorem

Gap amplification and Alphabet reduction

Alphabet reduction

There exists a constant gg and a CL-reduction h such that for
every CSP instance ¢, if ¢ had arity two over a (possibly
non-binary) alphabet {0..W — 1} then ¢) = h(¢) has arity qo over
a binary alphabet and satisfies:

val(p) <1—e = val(h(¢)) <1—¢/3

Aditya Morolia PCPs and Hardness of Approximation

Proof of the PCP Theorem

Gap amplification and Alphabet reduction

Arity | Alphabet | Constraints | Value
Original a0 binary m 1—ce¢
GAP AMPLIFICATION ~U’ U’ U’ U’
Lemma 18.29 | 2 W Cm 1 — 6e
ALPHABET REDUCTION ~U’ U’ U’ “U’
Lemma 18.30 | qo binary C'Cm 1—2¢

Aditya Morolia PCPs and Hardness of Approximation

Gap amplification - Proof sketch

Gap amplification - Proof sketch

Aditya Morolia PCPs and Hardness of Approximation

Gap amplification - Proof sketch

Step 1 - Preparing the constraints for powering

We can convert the given CSP into a CSP with the following
properties:

©Q The arity q is 2.

@ The constraint graph corresponding to the CSP is d-regular,
where d is a constant independent of alphabet size.

© The constraint graph is an expander.

This can be done in 2 steps, first adding or splitting constraints to
make the graph into a regular graph (we can allow self loops and
parallel edges.) Then, overlapping the graph with an expander
graph to make a graph with required degree such that it is an
expander. The number of constraints will increase, and the gap
will reduce because of this. But in the next step, called the
powering step, the the gap will increase more than this decrease.

Aditya Morolia PCPs and Hardness of Approximation

Gap amplification - Proof sketch

Step 2 - Powering

Let v be a 2CSPyy instance satisfying Properties 1 through 3. For
every number t, there is an instance of 2CSP ¢! such that:

Q@ ! is a 2CSP\y-instance with alphabet size W’ < WdSt,
where d denote the degree of ©'s constraint graph. The
instance ¥t has d*tVtn constraints, where n is the number of
variables in ¢

@ If 1) is satisfiable then so is 9t.

© For every € < d%/f’ if val(y)) <1 — € then val(¢t) <1 — ¢ for

I\t
€ = 1o5awa ¢

© The formula vt is computable from) in time polynomial in m
and W',

Aditya Morolia PCPs and Hardness of Approximation

Gap amplification - Proof sketch

Powering - Proof sketch

Proof: Let ¥ be a 2CSP\y-instance with n variables and m = nd
constraints, and let G denote the constraint graph of 4. The
formula vt will have the same number of variables as 7). The new
variables y = y1,... y, take values over an alphabet of size

w' = WdSt, and thus a value of a new variable y; is a d5t—tup|e of
values in {0... W — 1}. We will think of this tuple as giving a
value in {0... W — 1} to every old variable u; where j can be
reached from u; using a path of at most t + /t steps in G. In
other words, the tuple contains an assignment for every u; such
that j is in the ball of radius t + /t and center i in G.

Aditya Morolia PCPs and Hardness of Approximation

Gap amplification - Proof sketch

Powering - Proof sketch

Figure 18.3: An assignment to the formula %* consists of n variables over an alphabet of size less than W', where
cach variable encodes the restriction of an assignment of ¥ to the variables that are in some ball of radius # + V% in
- Yn to ' may be inconsistent in the sense that if i falls in the
im a different value for u; than the value claimed

s constraint graph. Note that an assignment
intersection of two such balls centered at k and k', then y;. may
by yar

Gap amplification - Proof sketch

Powering - Proof sketch

For every (24 1)-step path p = {i1,...,d242) in G, we have one corresponding constraint Cp in
¢! (see Figure 18.4). The constraint C}, depends on the variables y;, and yi,, .1 and outputs FALSE
if (and only if) there is some j € [2¢ 4 1] such that:

-

. ij isin the £ + Vt-radius ball around 4.

o

. ij41 s in the ¢ + \/F-radius ball around iy 5

. If w denotes the value y;, claims for u;; and w' denotes the value Yiseyo Claims for u; ,, then
the pair (w, w’) violates the constraint in ¢ that depends on ui; and ug .

Aditya Morolia

Gap amplification - Proof sketch

Powering - Proof sketch

Figure 18.4: 4" has one constraint for every path of length 2¢ + 1 in ¥'s constraint graph, checking that the views
of the balls centered on the path’s two endpoints are consistent with one another and the constraints of 1.

Alphabet Reduction - Proof sketch

Alphabet Reduction - Proof sketch

Aditya Morolia PCPs and Hardness of Approximation

Alphabet Reduction - Proof sketch

Alphabet reduction

Alphabet Reduction is a simple consequence of following corollary:

qCSP view of PCP of proximity
There exists positive integer gg and an exponential-time
transformation that given any circuit C of size m and n inputs and
two numbers ny, ny such that n; + ny = n produces an instance ¢
of goCSP of size 2P°(m) over a binary alphabet such that:
@ The variables can be thought of as being partitioned into
three sets 71, mp, m3 where 1 has 2™ variables and 7 has 2
variables.

Aditya Morolia PCPs and Hardness of Approximation

Alphabet Reduction - Proof sketch

o u; € {0,1}™ , up € {0,1}"™ is such that u; o uy is a satisfying
assignment for circuit C , then there is a string 73 of size
2pPoly(m) such that WH(uy) o WH(u2) o w3 satisfies 4.

@ For every strings 71, m2, w3 € {0,1}*, where 71 and 7 have
2n1 and 2™ bits respectively, if 1 o 7 o 73 satisfy at least 1/2
the constraints of ¢ ¢ , then 71, m are 0.99-close to
WH (u1), WH(uy) respectively for some uy, up such that
uy o Uy is a satisfying assignment for circuit C.

Aditya Morolia PCPs and Hardness of Approximation

Alphabet Reduction - Proof sketch

Alphabet reduction

Original instance:

P [

s B ?B(‘\
variables: [0] (%] [G]
[a——
Transformed instance: ~

custert custer2 custerm
constraints:
variables:
Crmesphebel) U SWH(U,) Uy=WH(U,) U=WH(u,) , My,

Figure 18.7: The alphabet reduction transformation maps a 2CSP instance ¢ over alphabet {0.W—1} into a
qCSP instance) over the binary alphabet. Each variable of ¢ is mapped to a block of binary variables that in the
correct assignment will contain the Walsh-Hadamard encoding of this variable. Each constraint C; of ¢ depending
on variables u;, u; is mapped to a cluster of constraints corresponding to all the PCP of proximity constraints for
Cy. These constraint depend on the encoding of u; and u;, and on additional auxiliary variables that in the correct
assignment contain the PCP of proximity proof that these are indeed encoding of values that make the constraint
Cy true.

Aditya Morolia

Alphabet Reduction - Proof sketch

Thank You!

Aditya Morolia PCPs

Hardness of Approximation

	Setting up the definitions
	PCP Theorems
	Proof of the PCP Theorem
	Gap amplification - Proof sketch
	Alphabet Reduction - Proof sketch

