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Revisiting NP

A language L is said to be in NP if there is a poly-time Turing
machine V (“verifier”) that, given input x , checks certificates (or
membership proofs) to the effect that x ∈ L. This means,

x ∈ L =⇒ ∃π s.t. V π(x) = 1

x /∈ L =⇒ ∀π V π(x) = 0

where V π denotes “a verifier with access to certificate π”
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Probabilistically Checkable Proofs

Consider some changes in previous notion. Let’s say the verifier

1 is probabilistic

2 has random access to to the proof string π.

This becomes possible after allowing queries using a special
address tape which allows random access. Queries to retrieve a
random bit of the proof string.
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Probabilistically Checkable Proofs
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Some Definition

Verifiers can be adaptive and non-adaptive.

Non-Adaptive Verifier

A nonadaptive verifier selects its queries based only on its input
and random tape.

Adaptive Verifier

An adaptive verifier can in addition rely upon bits it has already
queried in π to select its next queries.
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(r , q)-verifier

(r , q)-verifier

Let L be a language and q, r : N 7→ N. We say that L has an
(r(n), q(n))-verifier if there’s a polynomial-time probabilistic
algorithm V satisfying:

Efficiency: On input a string x ∈ {0, 1}n and given random
access to a string π ∈ {0, 1}∗ (which we call the proof), V
uses at most r(n) random coins and makes at most q(n)
non-adaptive queries to locations of π. Then it outputs
“1”(for “accept”) or “0” (for “reject”).
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(r , q)-verifier – Continue

(r , q)-verifier

Completeness: If x ∈ L then there exists a proof π ∈ {0, 1}∗
such that Pr [V π(x) = 1] = 1. We call π the correct proof for
x .

Soundness: If x /∈ L then for every proof π ∈ {0, 1}∗,
Pr [V π(x) = 1] ≤ 1/2.
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PCPs – an example
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Constraint satisfaction problem

CSPs

Let q,W ∈ N. A qCSPW instance φ is a collection of functions
φ1, . . . φm (called constraints) such that each
φi : {0 . . .W − 1}n → {0, 1} such that each function φi depends
on at most q of its input locations. That is,
∀i ∈ [m]∃j1, . . . jq ∈ [n], f : {0 . . .W − 1}q → {0, 1} such that
φi (u) = f (uj1 , . . . ujq)∀u ∈ {0 . . .W − 1}n

Denote the maximum fraction of constraints satisfied by any

assignment u as val(φ) = maxu
(∑m

1 φi (u)
m

)
.
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Gap Problems - ρ-GAP3SAT

Let ρ ∈ {0, 1}. The ρ-GAP-3SAT problem is to determine, given a
3CNF formula φ whether:

φ is satisfiable, in which case we say φ is a YES instance of
ρ-GAP-3SAT.

val(φ) ≤ ρ, in which case we say φ is a NO instance of
ρ-GAP-3SAT.
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Expander Graphs

Theorem

Let G = (V ,E ) be a λ-expander graph for some λ ∈ (0, 1). Let S
be a subset of V with |S | = β|V | for some β ∈ (0, 1). Let
(X1, . . .Xl) be a tuple of random variables denoting the vertices of
a uniformly chosen (l − 1)-step path in G . Then,

(β − 2λ)k ≤ Pr [∀i∈[l ]Xi ∈ S ] ≤ (β + 2λ)k
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Walsh Hadamard Code

For two strings x , y ∈ {0, 1}n, define x � y to be the number∑n
i=1 xiyi (mod 2). The Walsh-Hadamard code is the function

WH : {0, 1}n 7→ {0, 1}2n that maps a string x ∈ {0, 1}n into the
string z ∈ {0, 1}2n (a truth table of the function.)
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PCP Theorem

PCP Theorem

NP = PCP(log n, 1)

PCP(r(n), q(n)) ⊆ NTIME (2O(r(n))q(n))

PCP Theorem

∃q ∈ N, ρ ∈ {0, 1} such that ρ-GAP-qCSP is NP-hard
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Equivalence of the two definitions
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Equivalence of the two definitions

PCP verifier (V) ↔ CSP instance (φ)

PCP proof (π) ↔ Assignment to variables u

Length of proof ↔ Number of variables (n)

Number of queries (q) ↔ Arity of constraints (q)

Number of random bits (r) ↔ Logarithm of number of
constraints (logm)

Soundness parameter ↔ Maximum of val(φ) for a NO
instance

NP ⊆ PCP(log n, 1) ↔ ρ-GAPqCSP is NP-hard
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Corollary

There exists some constant ρ < 1 such that if there is a
polynomial-time ρ-approximation algorithm for MAX 3SAT then P
= NP.
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Gap Producing Reductions

To prove the above corollary for some fixed ρ < 1, it suffices to
give a polynomial-time reduction f that maps a 3CNF formula to
another 3CNF formula such that:

ρ ∈ 3SAT =⇒ val(f (φ)) = 1

ρ /∈ 3SAT =⇒ val(f (φ)) < ρ
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One Interesting Result

NP ⊆ PCP(poly(n), 1)
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PCP Theorem

∃q ∈ N, ρ ∈ {0, 1} such that ρ-GAP-qCSP is NP-hard

Proof idea: Let ρ = 1− ε. Since the number of satisfied
constraints is always a whole number, if φ is unsatisfiable then
val(φ) ≤ 1− 1

m . Hence, the gap problem (1− 1
m )-GAP 3CSP is a

generalization of 3SAT and is NP hard. The idea behind the proof
is to start with this observation, and iteratively show that
(1− ε)-GAPqCSP is NP-hard for larger and larger values of ε, until
ε is as large as some absolute constant independent of m. This is
formalized in the following lemma.
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To formalise the idea from the previous slide, we define a new
reduction as follows:

CL Reduction

A function f mapping CSP instances to a CSP instances is a CL
reduction if it is polynomial time computable and for every CSP
instance φ with m constraints and satisfies:

Completeness: φ is satisfiable =⇒ f (φ) is satisfiable

Linear Blowup: f (φ) has at most Cm constraints and
alphabet W, where C ,W can depend on the arity and the
alphabet size of φ (but not on the number of constraints or
variables).
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PCP Main Lemma

∃q0 ≥ 3, ε0 > 0 and a CL-reduction f such that for every q0CSP
instance φ on binary alphabet, and every ε < ε0, ψ = f (φ) is a
q0CSP over a binary alphabet such that

val(φ) ≤ 1− ε =⇒ val(ψ) ≤ 1− 2ε
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PCP Theorem from the PCP main lemma

We can reduce the NP-hard problem q0CSP to ρ-GAP-q0CSP

The idea is to use the CL reduction repeatedly and double the
gap in each iteration.

if φ is the q0-CSP instance with m constraints, then as
observed before, if φ is satisfiable, val(ψ) = 1, otherwise
val(ψ) ≤ 1− 1

m . We can use the gap amplification procedure
to amplify this gap (if it exists) from 1

m to
val(ψ) ≤ min{2ε0, 1− 2log m/m} = 1− 2ε0 by applying this
logm times.

That is, From the above lemma, the size of ψ will blow up
polylogarithmically in m. And hence the PCP theorem is
proved.
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Gap amplification and Alphabet reduction

Gap amplification

For every l ∈ N, there exists a CL-reduction gl such that for every
CSP instance φ with binary alphabet, the instance ψ = gl(φ) has
has arity only 2 (but over a non-binary alphabet) and satisfies:

val(φ) ≤ 1− ε =⇒ val(ψ) ≤ 1− lε

for every ε < ε0 where ε0 > 0 is a number depending only on l and
the arity q of the original instance φ.
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Gap amplification and Alphabet reduction

Alphabet reduction

There exists a constant q0 and a CL-reduction h such that for
every CSP instance φ, if φ had arity two over a (possibly
non-binary) alphabet {0..W − 1} then ψ = h(φ) has arity q0 over
a binary alphabet and satisfies:

val(φ) ≤ 1− ε =⇒ val(h(φ)) ≤ 1− ε/3
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Gap amplification and Alphabet reduction
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Step 1 - Preparing the constraints for powering

We can convert the given CSP into a CSP with the following
properties:

1 The arity q is 2.

2 The constraint graph corresponding to the CSP is d-regular,
where d is a constant independent of alphabet size.

3 The constraint graph is an expander.

This can be done in 2 steps, first adding or splitting constraints to
make the graph into a regular graph (we can allow self loops and
parallel edges.) Then, overlapping the graph with an expander
graph to make a graph with required degree such that it is an
expander. The number of constraints will increase, and the gap
will reduce because of this. But in the next step, called the
powering step, the the gap will increase more than this decrease.
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Step 2 - Powering

Powering

Let ψ be a 2CSPW instance satisfying Properties 1 through 3. For
every number t, there is an instance of 2CSP ψt such that:

1 ψt is a 2CSPW ′-instance with alphabet size W ′ <W d5t
,

where d denote the degree of ψ’s constraint graph. The
instance ψt has d t+

√
tn constraints, where n is the number of

variables in ψ

2 If ψ is satisfiable then so is ψt .

3 For every ε < 1
d
√
t
, if val(ψ) ≤ 1− ε then val(ψt) ≤ 1− ε′ for

ε′ =
√
t

105dW 4 ε.

4 The formula ψt is computable from ψ in time polynomial in m
and W d t

.
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Powering - Proof sketch

Proof: Let ψ be a 2CSPW -instance with n variables and m = nd
constraints, and let G denote the constraint graph of ψ. The
formula ψt will have the same number of variables as ψ. The new
variables y = y1, . . . yn take values over an alphabet of size
W ′ = W d5t

, and thus a value of a new variable yi is a d5t-tuple of
values in {0 . . .W − 1}. We will think of this tuple as giving a
value in {0 . . .W − 1} to every old variable uj where j can be
reached from ui using a path of at most t +

√
t steps in G . In

other words, the tuple contains an assignment for every uj such
that j is in the ball of radius t +

√
t and center i in G .
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Alphabet reduction

Alphabet Reduction is a simple consequence of following corollary:

qCSP view of PCP of proximity

There exists positive integer q0 and an exponential-time
transformation that given any circuit C of size m and n inputs and
two numbers n1, n2 such that n1 + n2 = n produces an instance ψC

of q0CSP of size 2poly(m) over a binary alphabet such that:

The variables can be thought of as being partitioned into
three sets π1, π2, π3 where π1 has 2n1 variables and π2 has 2n2

variables.
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u1 ∈ {0, 1}n1 , u2 ∈ {0, 1}n2 is such that u1 ◦ u2 is a satisfying
assignment for circuit C , then there is a string π3 of size
2poly(m) such that WH(u1) ◦WH(u2) ◦ π3 satisfies ψC .

For every strings π1, π2, π3 ∈ {0, 1}∗, where π1 and π2 have
2n1 and 2n2 bits respectively, if π1 ◦ π2 ◦ π3 satisfy at least 1/2
the constraints of ψC , then π1, π2 are 0.99-close to
WH(u1),WH(u2) respectively for some u1, u2 such that
u1 ◦ u2 is a satisfying assignment for circuit C .
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Alphabet reduction
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Thank You!
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