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Motivation

Cooperative Societies, such as
those of artisans, where the _

. . Market-facing
quality and perceived value of Sellers
each produce may vary greatly, it
becomes important to carefully
manage the inventory and
generate supply accordingly.

Cooperative

The problem faced is hence Societies

about deciding what quantity of
each type of product to produce /
procure so as to maximize the
overall revenue of the

cooperative(s). Individual Artisans




Subset Selection and Its Applications

Such problems fall under the wider
category of ‘Subset Selection’

and is faced not only by
cooperative societies but also in
other familiar marketplaces such as
E-commerce Platforms and
Supermarkets etc.

In all scenarios, the broader goal is
to maximize revenue whilst
ensuring certain quality standards.

amazon —

coop —

Which seller’s products to
display to a user for a
particular searched keyword.

How many apples to procure
from each of the regional
farmers.



Problem Formulation

Decent Quality,  High Quality, Low quality, but Average quality,
Priced Reasonably but expensive economical  and highly priced
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N agents, each associated with
capacity kl.,
cost ¢, and
quality g..

Expected utility to planner upon selecting an
agentis equal to Rq. - ¢,

Average Quality Threshold a
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Dynamic Programming Based Solution

Agents are segregated into four categories : Algorithm 1 DPSS
1: Inputs: N, a, R, costs ¢ = {c; }ien, qualities ¢ = {qi }ien
° High Quality, Low Cost (81) v 2: Ol.lt.pu.t: Q.uantiti'es procured x = (xy, ..., Xpn)
. . 3: Imitialization: Vi € N, r; = Rq; —¢;,z2=0
e Low Quality, High Cost (S,) X 1 & , 2 :
) . : : Segregate S1,52,53,54 as described in Section 3.4
® ngh Qua“ty’ ngh Cost (83) ? 5: Vi€ S5, xi= l;z=z+r,-:d:2,~esl(q,-—a)
e Low Quality, Low Cost (S,) ? 6: Vi€ Sy, xi=0
7:G=52US3;Vi€G,d,'=qi*a'
8: function DP(i, d?¢, xt¢, x*, zt¢, z*)
9: if i == |G| and d'¢ < 0 then return x*, z*

We formulate it as a dynamic programming 10:  ifi ==|G|and d*¢ > 0 then

problem where selecting each unit brings in LL: ifZ“’*> Z’;ethe': N

a revenue of R*(q, - ¢) at a cost of (a - q), L2: LTEaT =

which is the loss in quality. S il ,

14: X% 2% = . DP(i+ 1, d*e, [xt%, 0], #*, 2t 2%)
. o 15: x*,z* = DP(i + 1, d*® + d;, [x?¢,1], x*, z!¢ + ri, 2%)

Hence, the problem is to maximize the PR

revenue while making sure that the total 17: xS, zG = DP(0,d,[ 1,[ 1,0,0)

cost is within budget. 18: Vi € G, x; = x°

19: return x




What if qualities are unknown?

- Quality of an individual item of produce is
tough to measure.

- Quality of an agent is defined as the
expected quality of its produce.

- The planner needs to carefully learn the
qualities by procuring units from the agents
across multiple round in a way that
minimizes the loss of revenue.

This is an example of Exploration vs
Exploitation trade-off.

- This type of sequential learning problem is
often formulated as Multi-Armed Bandit
(MAB) problem.

- Here, each agent is modelled as an arm
associated with an unknown stochastic
parameter : quality.

- Since the planner can select multiple arms
in each round (say, a day), and gets to
observe the sale of all the procured
products, this problem falls under the
category of Combinatorial MAB (CMAB) with
semi-bandit feedback.



Isn’t there something that already addresses this?

Combinatorial Multi-Armed Bandit with General
Reward Functions

Wei Chen* Wei Hu' FuLi? Jian Li® Yu Liu¥ Pinyan Lu/

e Assumes the availability of a feasible
set of subsets (which they refer to as
‘super arm’) to select from

e In our setting, the feasible set (that
satisfies the Quality Constraint) is
unknown and needs to be learnt as
well.

A quality assuring, cost optimal multi-armed bandit G)C“’“""”“
mechanism for expertsourcing
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e The objective function depends only
on the agents’ cost (which are
unknown) and not the qualities of the
agents.

e In our setting, both the constraint and
the objective function depends on the
unknown parameter.



(DP)SS - UCB

We propose a UCB-based framework that
assumes the availability of an offline Subset
Selection Algorithm (SSA) which outputs the
optimal solution for the qualities and cost of agents,
and the quality threshold provided to it as input.
When DPSS is used as the SSA, we refer to it as
DPSS-UCB.

We prove that our framework achieves the
following two properties:

1. Constraint Satisfaction
2. Sublinear Regret

Algorithm 2 SS-UCB

10:

11:
12:

e 100 S OV N RS SO0 D By

Inputs: N, «a, €, R, costs ¢ = {c; }ieNn
For each agent i, maintain: w!, g7, (¢})*
re3L.4-0
252
while ¢+ < 7 (Explore Phase) do
Play a super-arm S’ = N
Observe qualities X{ , Vi € S* and update w!, §
t—t+1
while ¢ < T (Explore-Exploit Phase) do

For each agent i, set (§/)* = g} + li%,’
i

S =SSA ({(§])" }ien, ¢, @ + €2.R)
Observe qualities X/, Vi € S* and update w’, §
te—t+1

t
i

t
i




Ensuring Quality Constraints

. " LEMMA 2. The difference between the average 0f((jf)+ and the LEMMA 3. Vt> 1
Ensurlng Qua“tles average ()fq:f over the agents i in St is less than €3, ¥t > T. 1
. . . t _ 2 At B
during exploration is PROOF. We have, Pl daw <a-el 5 ZS (¢8) > ) | < exp(-€}h).
iffi 1 p | V3int V3int ;
difficult and . w2 (@D -di) = 7 Z \/ﬁ < = PROOF. Let Y! = L 3,5 gt Since E[§!] = E[X/] = gi, E[Y’]
counter-productive. <8 iR Rty Ymin = g",,. Hence, we have,
where w! . =min; w!. Since, for t < , we are exploring all the PEY ] <a—e)| Y >a)<P(Y! > B[] +e)
i agents, thus, wf = 7. Now, since wf > wiT, Vt > r, thus, we claim i
We prOV|de PAC that w! . > 7 for ¢t > 7. Hence, < exp(—eyw’).
t — t . .
bOU ndS on DPSS \3Int 3InT whe_rcw = Dliest W;, i.e., total nurpber of agents selected till round
- = oz t. Since we pull atleast one agent in each round, we can say that,
satisfying QC after ‘t’ Wi ’ w! > t. Thus, Vt > 7
Forr = 30T we have, 1
rounds. 2¢; P ( Gho <a—e | 7 Z (G) 2 af | < exp(=€?t).
1 5 5 ieSt
72, @ -d)<e ' -



Regret Analysis

Refer to paper
https://arxiv.org/pdf/2102.04824. pdf



Greedy Approach

DPSS is O(2") which makes it
difficult to scale when n is large.

We propose a greedy based
algorithm, GSS, that runs in
polynomial time, O(nlogn), and
provides an approximate solution
to our ILP.

GSS can also be used as a SSA
in the SS-UCB framework, which
we refer to as GSS-UCB.

Algorithm 3 GSS

I
: Output: Quantities procured x = (x, . . ., Xn)
: Imitialization: Vi € N, r; = Rq; — ¢;

: Segregate S1,52,53,54 as described in Section 3.4

14:
15:
16:
17:
18:
19:

20:
21:
22:
23:

: Ly = sort(Sy) on decreasing order of

®° N WU R W

: Lz = sort(S3) on increasing order of
9:
10:
11:
12:
132

Inputs: N, a, R, costs ¢ = [c;], qualities q = [q;]

VieS,.xi=1.d= Ziesl(qi - a)
VieSsy, xij=0

ri
a—q;
ri

qi

o
P=O,q=0
while d > 0 and p < [Sz| do

i = Ly[p];

ifa—qg; <dthenx; =1,d=d-a—-q;,p+=1

else x; = af'q_,d=o
1

while p < |Sz| and g < |S3| do
i=Lpl.j= L3[rq_]
a= ai—'q’ b= a—_-qu
if a < b then break;
wy = min((1 - x;)(a — g;), (1 - x;)(q; — @)

3 - ‘W1 . — W1
Xit = aoq Nt T gra

if x; == 0then p + +;

if x; == 0 then g + +;
if0 <xj <lthenx;=1

return | x |




How Fast and How Approximate?

We compare the
empirical performance of
GSS with DPSS and an
ILP solver - the COIN-OR
Branch and Cut Solver
(CBC).

The theoretical
approximation limit can
be arbitrarily small but in
practice it gives an
average approximation
ratio greater than 0.9

” n | tdpss Itgss | tilp 3 tgss || H n | tilp 2 tgss 1.00 1
2 5.5 70 25 66.7 0.99
5 1577 64 50 58.3
8 326 63.7 100 527 Zgss 0-981
10 54.3 58.6 400 43.1 Zdpss ) g7 |
12 106.3 67.6 1000 31.8
14 284.4 65.3 5000 31.6 0.96 1
16 897.1 60.2 10000 34.5 0.951
18 3109.7 63.1 50000 45 '
20 11360.6 68.1 100000 56.8 0.94
Table 1: Computational Performance of GSS w.r.t. to DPSS 23 5 8 10 12 14 16 18 20
and ILP number of agents (n)
L1~ o § § B o - & 1.00 A
e T TG
o 8 1] ¢} o 0.99 1
081 g 8 8
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Zdpss (] Zilp  0.97 4
o o
0.4 1 o 0.96 -
—— =025
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% of times QC satisfied

Experimental Results
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Possible Extensions To This Research

1. Dynamic Pool of Agents

2. An agent selected in a particular round is not available for the next few round
possibly due to the lead time in procuring the units. Sleeping Bandits.

3. Inclusion of strategic agents where a planner also needs to elicit the cost of
production truthfully. Mechanism Design






