Approximate Computing

Salman Ahmed

Motivation and Ad-hoc Approaches

- Declining Moore's law
- Dark Silicon
- Noisy input
- Limited data precision
- Physical defects
- Additional load or hard real-time constraints
- Perceptual limitations of humans
- Trade off quality with efficiency

- Precision Scaling
- Loop Perforation
- Load Value Approximation
- Memoization
- Skipping Tasks and Memory Accesses
- Using Multiple Inexact Program Versions
- Using Inexact or Faulty Hardware
- Using Voltage Scaling
- Approximating DRAM Memories

ALS: Using Approximate Std. Cell Library

- Design Space Reduction
- Truth table Optimization
- Characterization

S. De, J. Huisken and H. Corporaal, "An Automated Approximation Methodology for Arithmetic Circuits," 2019 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), 2019.

ALS: Using Approximate Std. Cell Library

ALS: Using AST Transformations

- Data Type Simplifications
- Operation Transformations
- Arithmetic Expression Transformations
- Variable-to-Constant Substitution Transformations
- Loop Transformations

K. Nepal, S. Hashemi, H. Tann, R. I. Bahar and S. Reda, "Automated High-Level Generation of Low-Power Approximate Computing Circuits," in *IEEE Transactions on Emerging Topics in Computing*, vol. 7, no. 1, pp. 18-30, 1 Jan.-March 2019.

ALS: Using Boolean Matrix Factorization

S. Hashemi, H. Tann and S. Reda, "BLASYS: Approximate Logic Synthesis Using Boolean Matrix Factorization," 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), 2018, pp. 1-6.

ALS: Using Boolean Matrix Factorization

Algorithm 1: BLASYS: Boolean Level Approximate Circuit Synthesis

Input : Accurate Circuit ACir, Error Threshold Output: Approximate Circuit Cir 1 subcircuits=Decompose input circuit using $k \times m$ decomposition 2 // Factorization profiling Phase 3 for each subcircuit s_i with $m_i \leq m$ outputs do M=Construct truth table of s_i 4 // profile for every possible factorization degree 5 for f = 1 to $m_i - 1$ do 6 $[\mathbf{B}, \mathbf{C}] = BMF(\mathbf{M}, f)$ 7 $T_{s_i,f}$ =Construct truth table of **BC** 8 9 end 10 end 11 // Circuit Space Exploration Phase 12 Cir=ACir: 13 Let $f_i = m_i$ for all subcircuits s_i 14 while *OoR(Cir)* < threshold do **for** each subcircuit s_i with $f_i > 1$ **do** 15 $Cir' = Cir(s_i \rightarrow T_{s_i, f_i-1})$ 16 $\Delta err_i = OoR(Cir') - OoR(Cir)$ 17 end 18 $b = \arg \min_i (\Delta err_i)$ 19 $Cir = Cir(s_b \rightarrow T_{s_b, f_b^{-1}})$ 20 $f_b = f_b - 1$ 21 22 end 23 Cir=Synthesize Best new Design 24 return Cir

Design	Area Savings (%)	Power Savings (%)	Delay Reduction (%)
Adder32	44.78	63.79	12.07
Mult8	28.77	26.87	12.32
BUT	7.87	11.25	2.23
MAC	47.55	55.58	64.41
SAD	32.80	41.47	69.14
FIR	19.52	22.26	12.18

S. Hashemi, H. Tann and S. Reda, "BLASYS: Approximate Logic Synthesis Using Boolean Matrix Factorization," 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), 2018, pp. 1-6.

ALS: Using Pre-trained Error Network

2020. Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design. Association for Computing Machinery, New York, NY, USA.

ALS: Using LUT Memorization

î mk m k c M	$\frac{x}{x_0x_1x_2}$ y	$\begin{array}{c c} p \\ \hline x_0 x_1 x_2 \end{array} \begin{array}{ c c } y^0 & y^1 \end{array}$	$p \mid \hat{f}$
$\hat{f} : \mathbb{B}^{\kappa} \to \mathbb{B} \qquad b \in \mathbb{B}$ $\hat{f}(p) = \begin{cases} 1 & \text{if } c_{p1} > c_{p0}, \\ 0 & \text{if } c_{p1} < c_{p0}, \\ b & \text{if } c_{p1} = c_{p0} \end{cases}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

S. Chatterjee. "Learning and memorization". Proceedings of the 35th International Conference on Machine Learning 2018

ALS: Using LUT Memorization

LAVED	LUT	TRAINING ACCURACY						
LATEK	COUNT	MEAN	STD	MIN	MAX			
0	784	0.5072	0.0340	0.4042	0.6572			
1	1024	0.6055	0.0403	0.5120	0.7299			
2	1024	0.7431	0.0191	0.6721	0.7877			
3	1024	0.8297	0.0068	0.8038	0.8526			
4	1024	0.8655	0.0033	0.8562	0.8751			
5	1024	0.8808	0.0015	0.8759	0.8853			
6	1	0.8898	0.0000	0.8898	0.8898			

	PLANE	AUTO	BIRD	CAT	DEER	DOG	FROG	HORSE	SHIP	TRUCK
PLANE		0.77	0.77	0.80	0.82	0.81	0.84	0.81	0.71	0.79
AUTO	0.96		0.79	0.77	0.79	0.80	0.80	0.78	0.76	0.67
BIRD	0.95	0.98		0.68	0.63	0.69	0.66	0.72	0.83	0.81
CAT	0.96	0.98	0.96		0.70	0.61	0.68	0.71	0.81	0.76
DEER	0.96	0.98	0.95	0.96		0.73	0.69	0.71	0.83	0.81
DOG	0.98	0.99	0.97	0.96	0.97		0.72	0.70	0.82	0.79
FROG	0.97	0.98	0.95	0.95	0.97	0.96		0.75	0.85	0.80
HORSE	0.98	0.99	0.96	0.97	0.96	0.98	0.97		0.81	0.75
SHIP	0.93	0.96	0.98	0.98	0.98	0.98	0.99	0.98		0.77
TRUCK	0.97	0.95	0.98	0.97	0.97	0.98	0.98	0.97	0.98	

Test of Approximate Circuits

ISCAS circuits ⁴	#gates	$f_{\rm orig}$	f_{final}^{bf}	$f_{\Delta}^{bf}(\%)$	sec
c499*	577	1320	1153	12.65%	73s
c880*	527	1074	305	71.60%	31s
c1355*	575	1330	1196	10.08%	79s
c1908*	427	974	949	2.57%	30s
c2670*	931	1950	428	78.05%	396s
c3540*	1192	2657	839	68.42%	418s
c5315*	2063	4224	1648	60.98%	6224s
c6288*	2836	7048	3071	56.42%	4881s

Co	orrect [†]	App	x‡	Appx:8	5A0*	App	_{x:SA1} ±
In	Out [†]	Out [‡]	e^{\ddagger}	Out*	e^{\star}	Out [±]	e^{\pm}
00000	000	000	0	000	0	001	1
00001	001	001	0	000	1	001	0
00010	010	010	0	010	0	011	1
00011	011	011	0	010	1	011	0
00100	001	001	0	000	1	001	0
00101	010	000	2	000	2	001	1
00110	011	011	0	010	1	011	0
00111	100	010	2	010	2	011	1
01000	010	010	0	010	0	011	1
01001	011	011	0	010	1	011	0
01010	100	100	0	100	0	101	1
01011	101	101	0	100	1	101	0
01100	011	011	0	010	1	011	0
01101	100	010	2	010	2	011	1
01110	101	101	0	100	1	101	0
01111	110	100	2	100	2	101	1
10000	001	001	0	000	1	001	0
10001	010	000	2	000	2	001	1
10010	011	011	0	010	1	011	0
10011	100	010	2	010	2	011	1
10100	010	000	2	000	2	001	1
10101	011	001	2	000	3	001	2
10110	100	010	2	010	2	011	1
10111	101	011	2	010	3	011	2
11000	011	011	0	010	1	011	0
11001	100	010	2	010	2	011	1
11010	101	101	0	100	1	101	0
11011	110	100	2	100	2	101	1
11100	100	010	2	010	2	011	1
11101	101	011	2	010	2	011	2
11110	110	100	2	100	2	101	1
11111	111	101	2	100	3	101	2
†, ‡ Golden non-approx, approx (carry cut) 2-bit adder responses							

T, \ddagger Golden non-approx, approx (carry cut) 2-bit adder responses *, \pm Approx adder with SA0, SA1 at sum₀ (fl_{SA0}, fl_{SA1}) In:C_{in} a₁ a₀ b₁ b₀, Out:C_{out} sum₁ sum₀ e: error in each case, worst-case errors wc[‡]=2,wc^{*}=3, wc[±]=2

A. Chandrasekharan, S. Eggersglüß, D. Große and R. Drechsler, "Approximation-aware testing for approximate circuits," 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), 2018.

Insecurity of Approximate Circuits

Attack model	Key features				
No. 1: tamper interconnect No. 2: tamper AC function	Assumption	 AC functional IP is a blackbox; Interconnect between AC and non-AC IPs are accessible; 			
	Attack method	 (1) Swap MSB and LSB bits; (2) Force LSB to stuck-at-0/1; 			
	Assumption	(1) AC functional IP is a whitebox;(2) Non-AC IPs are protected blackbox			
	Attack method	 Use hardware Trojan to trigger malicious approximate function; Use external control to alter ambient environment. 			

Unlocking sequence in a deterministic circuit

Unlocking sequence in a non-deterministic circuit

F. Regazzoni, C. Alippi and I. Polian, "Security: The Dark Side of Approximate Computing?," 2018 *IEEE/ACM International Conference on Computer-Aided Design (ICCAD)*, 2018, pp. 1-6. Pruthvy Yellu, Mezanur Rahman Monjur, Timothy Kammerer, Dongpeng Xu, Qiaoyan Yu, "Security Threats and Countermeasures for Approximate Arithmetic Computing", *Design Automation Conference (ASP-DAC) 2020 25th Asia and South Pacific*, pp. 259-264, 2020.