How fast do quantum walks mix?

Shantanav Chakraborty¹, Kyle Luh² and Jérémie Roland¹

Phys. Rev. Lett. 124, 050501 (2020) arXiv:2001.06305

1 QuIC, Université libre de Bruxelles 2 CMSA, Harvard University

IIIT Theory Group Saturday Seminars, IIIT Hyderabad May 22, 2021

Quantum Information & Communication

- Consider an undirected graph G(V, E) of |V| = n vertices.
- Classical random walk on G is defined by an $n \times n$ stochastic matrix P such that $P_{ij} = 1/d_i$, where d_i is the degree of node *i*.
- If the row-vector v_0 is the initial state of the walker, after *t*-steps: $v_t = v_0 P^t$.

- Consider an undirected graph G(V, E) of |V| = n vertices.
- Classical random walk on G is defined by an $n \times n$ stochastic matrix P such that $P_{ij} = 1/d_i$, where d_i is the degree of node *i*.
- If the row-vector v_0 is the initial state of the walker, after *t*-steps: $v_t = v_0 P^t$.
- Converges to a stationary distribution: row vector π such that $\pi = \lim_{t \to \infty} v_0 P^t.$

- Consider an undirected graph G(V, E) of |V| = n vertices.
- Classical random walk on G is defined by an $n \times n$ stochastic matrix P such that $P_{ij} = 1/d_i$, where d_i is the degree of node *i*.
- If the row-vector v_0 is the initial state of the walker, after *t*-steps: $v_t = v_0 P^t$.
- Converges to a stationary distribution: row vector π such that $\pi = \lim_{t \to \infty} v_0 P^t$. That is, $\pi = \pi P$.

- Consider an undirected graph G(V, E) of |V| = n vertices.
- Classical random walk on G is defined by an $n \times n$ stochastic matrix P such that $P_{ij} = 1/d_i$, where d_i is the degree of node *i*.
- If the row-vector v_0 is the initial state of the walker, after *t*-steps: $v_t = v_0 P^t$.
- Converges to a stationary distribution: row vector π such that $\pi = \lim_{t \to \infty} v_0 P^t$. That is, $\pi = \pi P$.
- π is independent of v_0 .

Mixing time:
$$T_{\min} = \min\{T | \forall t \ge T, \|v_t - \pi\| \le \epsilon\}.$$

Mixing time:
$$T_{\min} = \min\{T | \forall t \ge T, \|v_t - \pi\| \le \epsilon\}.$$

If P has eigenvalues: $\lambda_n = 1 > \lambda_{n-1} \ge \cdots \lambda_1 \ge -1$, $\mathcal{T}_{\min} = \widetilde{\mathcal{O}}(1/\Delta)$,

where $\Delta = 1 - \lambda_{n-1}$.

Mixing time:
$$T_{\min} = \min\{T | \forall t \ge T, \|v_t - \pi\| \le \epsilon\}.$$

If P has eigenvalues: $\lambda_n = 1 > \lambda_{n-1} \ge \cdots \lambda_1 \ge -1$, $\mathcal{T}_{\min} = \widetilde{\mathcal{O}}(1/\Delta)$,

where $\Delta = 1 - \lambda_{n-1}$.

- Depends only on the spectral gap
- Independent of the initial distribution of the walker.

(i) Any quantum state can be represented by a (unit) column vector in a Hilbert space, denoted as $|.\rangle$.

(i) Any quantum state can be represented by a (unit) column vector in a Hilbert space, denoted as $|.\rangle$.

Any *n*-dimensional quantum state can be expressed as a *superposition* of other quantum states:

$$|\psi_{0}\rangle = \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{pmatrix} = c_{1} \underbrace{\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}}_{|1\rangle} + c_{2} \underbrace{\begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}}_{|2\rangle} + \dots + c_{n} \underbrace{\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}}_{|N=2^{n}\rangle} = \sum_{j=1}^{N} c_{j} |j\rangle.$$

(i) Any quantum state can be represented by a (unit) column vector in a Hilbert space, denoted as $|.\rangle$.

Any n-dimensional quantum state can be expressed as a *superposition* of other quantum states:

$$|\psi_{0}\rangle = \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{pmatrix} = c_{1} \underbrace{\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}}_{|1\rangle} + c_{2} \underbrace{\begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}}_{|2\rangle} + \dots + c_{n} \underbrace{\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}}_{|N=2^{n}\rangle} = \sum_{j=1}^{N} c_{j} |j\rangle.$$

Quantum states are normalized, i.e. $\langle \psi_0 | \psi_0 \rangle = 1 \implies \sum_{j=1}^N |c_j|^2 = 1.$

(i) Any quantum state can be represented by a (unit) column vector in a Hilbert space, denoted as $|.\rangle$.

Any n-dimensional quantum state can be expressed as a *superposition* of other quantum states:

$$|\psi_{0}\rangle = \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{pmatrix} = c_{1} \underbrace{\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}}_{|1\rangle} + c_{2} \underbrace{\begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}}_{|2\rangle} + \dots + c_{n} \underbrace{\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}}_{|N=2^{n}\rangle} = \sum_{j=1}^{N} c_{j} |j\rangle.$$

Quantum states are normalized, i.e. $\langle \psi_0 | \psi_0 \rangle = 1 \implies \sum_{j=1}^N |c_j|^2 = 1.$

In fact, c_j denotes the "probability amplitude": probability of $|\psi_0\rangle$ to be in the state $|j\rangle$ is given by the absolute square of the inner-product (or overlap) between the states $|j\rangle$ and $|\psi_0\rangle$:

$$p_j = |\langle j | \psi_0 \rangle|^2 = |c_j|^2.$$
 $[|c_j| \le 1]$

(ii) Any quantum system evolves via the Schrödinger Equation,

$$irac{d}{dt}\left|\psi_{t}
ight
angle=H\left|\psi_{t}
ight
angle,$$

where H, known as the Hamiltonian is some Hermitian matrix corresponding to the underlying physical system.

(ii) Any quantum system evolves via the Schrödinger Equation,

$$irac{d}{dt}\left|\psi_{t}
ight
angle=H\left|\psi_{t}
ight
angle,$$

where *H*, known as the Hamiltonian is some Hermitian matrix corresponding to the underlying physical system.

If the Hamiltonian H is time-independent, the state $|\psi_0\rangle$ after some time t becomes

$$|\psi_t\rangle = \exp(-iHt) |\psi_0\rangle$$
.

(ii) Any quantum system evolves via the Schrödinger Equation,

$$irac{d}{dt}\left|\psi_{t}
ight
angle=H\left|\psi_{t}
ight
angle,$$

where *H*, known as the Hamiltonian is some Hermitian matrix corresponding to the underlying physical system.

If the Hamiltonian H is time-independent, the state $|\psi_{\mathbf{0}}\rangle$ after some time t becomes

$$|\psi_t\rangle = \exp(-iHt) |\psi_0\rangle$$
.

Quantum evolutions are governed by the unitary matrix U = exp(-iHt).

(ii) Any quantum system evolves via the Schrödinger Equation,

$$irac{d}{dt}\left|\psi_{t}
ight
angle=H\left|\psi_{t}
ight
angle,$$

where H, known as the Hamiltonian is some Hermitian matrix corresponding to the underlying physical system.

If the Hamiltonian H is time-independent, the state $|\psi_0
angle$ after some time t becomes

$$|\psi_t\rangle = \exp(-iHt) |\psi_0\rangle$$
.

Quantum evolutions are governed by the unitary matrix U = exp(-iHt).

(iii) Following a *projective* measurement of $|\psi_t\rangle$ in the basis spanned by the states $|k\rangle$, defined by the set of measurement operators $\{M_k = |k\rangle \langle k|\}$, the probability of the system to be in state $|j\rangle$ is given by

(ii) Any quantum system evolves via the Schrödinger Equation,

$$irac{d}{dt}\left|\psi_{t}
ight
angle=H\left|\psi_{t}
ight
angle,$$

where H, known as the Hamiltonian is some Hermitian matrix corresponding to the underlying physical system.

If the Hamiltonian H is time-independent, the state $|\psi_0
angle$ after some time t becomes

$$|\psi_t\rangle = \exp(-iHt) |\psi_0\rangle$$
.

Quantum evolutions are governed by the unitary matrix U = exp(-iHt).

(iii) Following a *projective* measurement of $|\psi_t\rangle$ in the basis spanned by the states $|k\rangle$, defined by the set of measurement operators $\{M_k = |k\rangle \langle k|\}$, the probability of the system to be in state $|j\rangle$ is given by

$$|\langle j|M_j|\psi_t\rangle|^2 = |\langle j|\psi_t\rangle|^2.$$

- Quantum evolutions are unitary and so quantum walks never converge to a limiting distribution.
- Two notions of quantum mixing:

- Quantum evolutions are unitary and so quantum walks never converge to a limiting distribution.
- Two notions of quantum mixing:
- Prepare a coherent encoding of π , i.e. $|\pi\rangle$
 - Allows us to sample from π , the limiting distribution of the underlying random walk.

- Quantum evolutions are unitary and so quantum walks never converge to a limiting distribution.
- Two notions of quantum mixing:
- Prepare a coherent encoding of π , i.e. $|\pi\rangle$
 - Allows us to sample from π, the limiting distribution of the underlying random walk.
 - Related to the hitting time: $T = \Theta\left(\sqrt{HT}\right)$. [CLR, Phys. Rev. A (2020)]

- Quantum evolutions are unitary and so quantum walks never converge to a limiting distribution.
- Two notions of quantum mixing:
- Prepare a coherent encoding of π , i.e. $|\pi\rangle$
 - Allows us to sample from π, the limiting distribution of the underlying random walk.
 - Related to the hitting time: $T = \Theta\left(\sqrt{HT}\right)$. [CLR, Phys. Rev. A (2020)]
- Time-averaged mixing of a quantum walk: Sample from the "limiting distribution" of the quantum walk.

- Quantum evolutions are unitary and so quantum walks never converge to a limiting distribution.
- Two notions of quantum mixing:
- Prepare a coherent encoding of π , i.e. $|\pi\rangle$
 - Allows us to sample from π, the limiting distribution of the underlying random walk.
 - Related to the hitting time: $T = \Theta\left(\sqrt{HT}\right)$. [CLR, Phys. Rev. A (2020)]
- Time-averaged mixing of a quantum walk: Sample from the "limiting distribution" of the quantum walk.
 - This will be our focus!
 - We will consider continuous-time quantum walks, but results are valid for its discrete-time counterpart.

• Let G(V, E) be a graph of n nodes labelled $\{1..., n\}$ and |E| edges.

- Let G(V, E) be a graph of *n* nodes labelled $\{1..., n\}$ and |E| edges.
- Consider the Hilbert space spanned by the localized quantum states at the vertices of the graph, i.e. {|1⟩,...|n⟩}

- Let G(V, E) be a graph of *n* nodes labelled $\{1..., n\}$ and |E| edges.
- Consider the Hilbert space spanned by the localized quantum states at the vertices of the graph, i.e. {|1⟩,...|n⟩}
- The adjacency matrix, A of G is defined as

$$A_{ij} = egin{cases} 1 & ext{if } (i,j) \in E(G) \ 0 & ext{otherwise} \end{cases}$$

- Let G(V, E) be a graph of *n* nodes labelled $\{1..., n\}$ and |E| edges.
- Consider the Hilbert space spanned by the localized quantum states at the vertices of the graph, i.e. {|1>, ... |n>}
- The adjacency matrix, A of G is defined as

$$A_{ij} = egin{cases} 1 & ext{if } (i,j) \in E(G) \ 0 & ext{otherwise} \end{cases}$$

- ▶ We shall consider the normalized adjacency matrix as the quantum walk Hamiltonian: $\bar{A}_G = \gamma A_G$, where $\gamma = 1/||A_G||$.
- ► The eigenvalues of \bar{A}_G : $\lambda_n = 1 > \lambda_{n-1} \ge \cdots \ge \lambda_1 \ge -1$. Also $\bar{A}_G |v_i\rangle = \lambda_i |v_i\rangle$.

► The eigenvalues of \bar{A}_G : $\lambda_n = 1 > \lambda_{n-1} \ge \cdots \ge \lambda_1 \ge -1$. Also $\bar{A}_G |v_i\rangle = \lambda_i |v_i\rangle$.

Average mixing [AAKV 2001]: Pick a time $t \in [0, T]$ uniformly at random, evolve $|\psi_0\rangle$ for this time under \bar{A}_G and measure in the node basis.

$$P_f(T) = rac{1}{T} \int_0^T |\langle f| e^{-iar{A}_G t} |\psi_0
angle|^2 dt.$$

• The eigenvalues of
$$\bar{A}_G$$
: $\lambda_n = 1 > \lambda_{n-1} \ge \cdots \ge \lambda_1 \ge -1$. Also $\bar{A}_G |v_i\rangle = \lambda_i |v_i\rangle$.

Average mixing [AAKV 2001]: Pick a time $t \in [0, T]$ uniformly at random, evolve $|\psi_0\rangle$ for this time under \bar{A}_G and measure in the node basis.

$$\mathcal{P}_{f}(T) = rac{1}{T} \int_{0}^{T} |\langle f| e^{-i ar{A}_{G} t} |\psi_{0}\rangle|^{2} dt.$$

Limiting distribution:

$$P_f(T o \infty) = \lim_{T o \infty} P_f(T) = \sum_{i=1}^n |\langle f | v_i
angle \langle v_i | \psi_0
angle |^2.$$

► The eigenvalues of \bar{A}_G : $\lambda_n = 1 > \lambda_{n-1} \ge \cdots \ge \lambda_1 \ge -1$. Also $\bar{A}_G |v_i\rangle = \lambda_i |v_i\rangle$.

Average mixing [AAKV 2001]: Pick a time $t \in [0, T]$ uniformly at random, evolve $|\psi_0\rangle$ for this time under \bar{A}_G and measure in the node basis.

$$\mathcal{P}_{f}(T) = rac{1}{T} \int_{0}^{T} |\langle f| e^{-i ar{A}_{G} t} |\psi_{0}\rangle|^{2} dt.$$

Limiting distribution:

$$P_f(T o \infty) = \lim_{T o \infty} P_f(T) = \sum_{i=1}^n |\langle f | v_i \rangle \langle v_i | \psi_0 \rangle|^2.$$

Quantum mixing time:

$$T_{\min}^{G} = \min\{T | \forall t \geq T, \|P_{f}(T) - P_{f}(T \to \infty)\|_{1} \leq \epsilon\}$$

Quantum Mixing time

- > T_{mix}^{G} depends on *all* eigenvalue gaps and also on the initial state.
- $P_f(T \to \infty)$ also depends on the initial state in general.

Quantum Mixing time

Limiting distribution:

$$P_f(T o \infty) = \lim_{T o \infty} P_f(T) = \sum_{i=1}^n |\langle f | v_i
angle \langle v_i | \psi_0
angle |^2.$$

Quantum mixing time:

$$T_{\min}^{G} = \min\{T | \forall t \geq T, \|P_{f}(T) - P_{f}(T \to \infty)\|_{1} \leq \epsilon\}.$$

Upper bound on the quantum mixing time:

$$T_{\min}^{G} = \mathcal{O}\left(\frac{1}{\epsilon}\sum_{i=1}^{n-1}\sum_{r=1}^{n-i}\frac{|\langle v_{i}|\psi_{0}\rangle|.|\langle\psi_{0}|v_{i+r}\rangle|}{|\lambda_{i+r}-\lambda_{i}|}\right)$$

- > T_{mix}^{G} depends on *all* eigenvalue gaps and also on the initial state.
- $P_f(T \to \infty)$ also depends on the initial state in general.

Upper bound on the quantum mixing time:

$$T_{\min}^{G} = \mathcal{O}\left(\frac{1}{\epsilon}\sum_{i=1}^{n-1}\sum_{r=1}^{n-i}\frac{|\langle \mathbf{v}_{i}|\psi_{0}\rangle|.|\langle\psi_{0}|\mathbf{v}_{i+r}\rangle|}{|\lambda_{i+r}-\lambda_{i}|}\right).$$

Upper bound on the quantum mixing time:

$$\mathcal{T}_{\mathrm{mix}}^{\mathsf{G}} = \mathcal{O}\left(rac{1}{\epsilon}\sum_{i=1}^{n-1}\sum_{r=1}^{n-i}rac{|\langle \mathbf{v}_i|\psi_0
angle|\,.\,|\langle\psi_0|\mathbf{v}_{i+r}
angle|}{|\lambda_{i+r}-\lambda_i|}
ight).$$

Upper bound on the quantum mixing time:

$$\mathcal{T}_{\mathrm{mix}}^{G} = \mathcal{O}\left(\frac{1}{\epsilon} \sum_{i=1}^{n-1} \sum_{r=1}^{n-i} \frac{|\langle \mathbf{v}_{i} | \psi_{\mathbf{0}} \rangle| . |\langle \psi_{\mathbf{0}} | \mathbf{v}_{i+r} \rangle|}{|\lambda_{i+r} - \lambda_{i}|}\right)$$

We need to bound

$$\Sigma = \sum_{i=1}^{n-1} \frac{1}{|\lambda_{i+1} - \lambda_i|} + \sum_{i=1}^{n-2} \frac{1}{|\lambda_{i+2} - \lambda_i|} + \dots$$

Upper bound on the quantum mixing time:

$$T_{\text{mix}}^{\mathcal{G}} = \mathcal{O}\left(\frac{1}{\epsilon} \sum_{i=1}^{n-1} \sum_{r=1}^{n-i} \frac{\left|\langle \mathbf{v}_{i} | \psi_{\mathbf{0}} \rangle\right| . \left|\langle \psi_{\mathbf{0}} | \mathbf{v}_{i+r} \rangle\right|}{\left|\lambda_{i+r} - \lambda_{i}\right|}\right)$$

We need to bound

$$\Sigma = \underbrace{\sum_{i=1}^{n-1} \frac{1}{|\lambda_{i+1} - \lambda_i|}}_{\Sigma_1} + \underbrace{\sum_{i=1}^{n-2} \frac{1}{|\lambda_{i+2} - \lambda_i|}}_{\Sigma_2} + \dots = \sum_r \Sigma_r = \sum_{i=1}^{n-1} \sum_{r=1}^{n-i} \frac{1}{|\lambda_{i+r} - \lambda_i|}.$$

Upper bound on the quantum mixing time:

$$T_{\min}^{G} = \mathcal{O}\left(\frac{1}{\epsilon}\sum_{i=1}^{n-1}\sum_{r=1}^{n-i}\frac{\left|\langle v_{i}|\psi_{0}\rangle\right|.\left|\langle\psi_{0}|v_{i+r}\rangle\right|}{\left|\lambda_{i+r}-\lambda_{i}\right|}\right)$$

We need to bound

$$\Sigma = \sum_{i=1}^{n-1} \sum_{r=1}^{n-i} \frac{1}{|\lambda_{i+r} - \lambda_i|}.$$

Upper bound on the quantum mixing time:

$$T_{\min}^{G} = \mathcal{O}\left(\frac{1}{\epsilon}\sum_{i=1}^{n-1}\sum_{r=1}^{n-i}\frac{\left|\langle v_{i}|\psi_{0}\rangle\right|.\left|\langle\psi_{0}|v_{i+r}\rangle\right|}{\left|\lambda_{i+r}-\lambda_{i}\right|}\right)$$

We need to bound

$$\Sigma = \sum_{i=1}^{n-1} \sum_{r=1}^{n-i} \frac{1}{|\lambda_{i+r} - \lambda_i|}.$$

If Δ_{\min} is the minimum of all eigenvalue gaps,

$$\frac{1}{\Delta_{\min}} \leq \Sigma \leq \widetilde{O}\left(\frac{n}{\Delta_{\min}}\right).$$

Upper bound on the quantum mixing time:

$$T_{\min}^{G} = \mathcal{O}\left(\frac{1}{\epsilon}\sum_{i=1}^{n-1}\sum_{r=1}^{n-i}\frac{\left|\langle v_{i}|\psi_{0}\rangle\right|.\left|\langle\psi_{0}|v_{i+r}\rangle\right|}{\left|\lambda_{i+r}-\lambda_{i}\right|}\right)$$

We need to bound

$$\Sigma = \sum_{i=1}^{n-1} \sum_{r=1}^{n-i} \frac{1}{|\lambda_{i+r} - \lambda_i|}.$$

If Δ_{\min} is the minimum of all eigenvalue gaps,

$$\frac{1}{\Delta_{\min}} \leq \Sigma \leq \widetilde{O}\left(\frac{n}{\Delta_{\min}}\right).$$

So $T_{\min}^{G} = \widetilde{O}(n/\Delta_{\min})$ is an upper bound for all graphs. For cycles, the mixing time is in $\widetilde{O}(n)$. [AAKV 2001].

Can we obtain a better upper bound for the mixing time for general classes of graphs?

Can we obtain a better upper bound for the mixing time for general classes of graphs?

We prove: The quantum mixing time of a graph of n nodes picked uniformly at random from the set of all simple graphs is in

$$T_{\rm mix}^{G(n,1/2)} = \widetilde{O}\left(n^{3/2}\right),$$

with probability 1 - o(1).

Can we obtain a better upper bound for the mixing time for general classes of graphs?

We prove: The quantum mixing time of a graph of n nodes picked uniformly at random from the set of all simple graphs is in

$$T_{\mathrm{mix}}^{G(n,1/2)} = \widetilde{O}\left(n^{3/2}\right),$$

with probability 1 - o(1). Using bound of AAKV2001: $\widetilde{O}(n^{7/2})$.

More generally, we obtain a better upper bound on the quantum mixing time for sparse and dense Erdös-Renyi random graphs.

Can we obtain a better upper bound for the mixing time for general classes of graphs?

We prove: The quantum mixing time of a graph of n nodes picked uniformly at random from the set of all simple graphs is in

$$T_{\mathrm{mix}}^{G(n,1/2)} = \widetilde{O}\left(n^{3/2}\right),$$

with probability 1 - o(1). Using bound of AAKV2001: $\widetilde{O}(n^{7/2})$.

More generally, we obtain a better upper bound on the quantum mixing time for sparse and dense Erdös-Renyi random graphs. Bound holds for almost all graphs!

A graph where each edge exists with probability p independently of the other edges. Denoted as G(n, p).

A graph where each edge exists with probability p independently of the other edges. Denoted as G(n, p).

Consider G(n, 1/2): A graph is picked uniformly at random from the set of all simple graphs.

A graph where each edge exists with probability p independently of the other edges. Denoted as G(n, p).

Consider G(n, 1/2): A graph is picked uniformly at random from the set of all simple graphs.

Almost all graphs satisfy property P, if G(n, 1/2) satisfies P with probability 1 - o(1).

A graph where each edge exists with probability p independently of the other edges. Denoted as G(n, p).

Consider G(n, 1/2): A graph is picked uniformly at random from the set of all simple graphs.

- Almost all graphs satisfy property P, if G(n, 1/2) satisfies P with probability 1 o(1).
- Fraction of graphs satisfying P goes to 1 as $n \to \infty$.

Evolution of Erdös-Renyi random graphs

Evolution of Erdös-Renyi random graphs

 $A_{G(n,p)}$ is a symmetric random matrix: Each (non-diagonal) entry is 1 with probability p and 0 with probability 1 - p.

Upper bound on the quantum mixing time of G(n, p): We prove that for $p \ge n^{-1/3}$, $T_{\text{mix}}^{G(n,p)} = \widetilde{O}\left(n^{3/2 - \log(p)/\log(n)}\sqrt{p}\right)$, almost surely.

For $p \ge \log^8(n)/n$, the maximum eigenvalue of $A_{G(n,p)}$: Random variable with mean np and standard deviation $\sqrt{p(1-p)}$ as $n \to \infty$ [FK1981, EKYY2011].

- For $p \ge \log^8(n)/n$, the maximum eigenvalue of $A_{G(n,p)}$: Random variable with mean np and standard deviation $\sqrt{p(1-p)}$ as $n \to \infty$ [FK1981, EKYY2011].
- ▶ We will consider as Hamiltonian: $\bar{A}_{G(n,p)} = A_{G(n,p)}/(np)$.

- For $p \ge \log^8(n)/n$, the maximum eigenvalue of $A_{G(n,p)}$: Random variable with mean np and standard deviation $\sqrt{p(1-p)}$ as $n \to \infty$ [FK1981, EKYY2011].
- ▶ We will consider as Hamiltonian: $\bar{A}_{G(n,p)} = A_{G(n,p)}/(np)$.
- $\blacktriangleright \|\bar{A}_{G(n,p)}\| \approx 1 \text{ and its eigenvalues: } \lambda_n = 1 > \lambda_{n-1} > \cdots + \lambda_1 \ge -1.$

- For $p \ge \log^8(n)/n$, the maximum eigenvalue of $A_{G(n,p)}$: Random variable with mean np and standard deviation $\sqrt{p(1-p)}$ as $n \to \infty$ [FK1981, EKYY2011].
- ▶ We will consider as Hamiltonian: $\bar{A}_{G(n,p)} = A_{G(n,p)}/(np)$.
- $\blacktriangleright \|\bar{A}_{G(n,p)}\| \approx 1 \text{ and its eigenvalues: } \lambda_n = 1 > \lambda_{n-1} > \cdots + \lambda_1 \ge -1.$

►
$$\lambda_{n-1} \leq 6/\sqrt{np} + O\left((np)^{-3/4} \log n\right)$$
 [FK1981, Vu2007].

- For $p \ge \log^8(n)/n$, the maximum eigenvalue of $A_{G(n,p)}$: Random variable with mean np and standard deviation $\sqrt{p(1-p)}$ as $n \to \infty$ [FK1981, EKYY2011].
- ▶ We will consider as Hamiltonian: $\bar{A}_{G(n,p)} = A_{G(n,p)}/(np)$.
- $\blacktriangleright \|\bar{A}_{G(n,p)}\| \approx 1 \text{ and its eigenvalues: } \lambda_n = 1 > \lambda_{n-1} > \cdots + \lambda_1 \ge -1.$

►
$$\lambda_{n-1} \leq 6/\sqrt{np} + O\left((np)^{-3/4}\log n\right)$$
 [FK1981, Vu2007].

• Spectral gap $\Delta = \Omega(1) \implies$ Classical mixing time is in $\widetilde{O}(1)$.

- For $p \ge \log^8(n)/n$, the maximum eigenvalue of $A_{G(n,p)}$: Random variable with mean np and standard deviation $\sqrt{p(1-p)}$ as $n \to \infty$ [FK1981, EKYY2011].
- ▶ We will consider as Hamiltonian: $\bar{A}_{G(n,p)} = A_{G(n,p)}/(np)$.
- $\blacktriangleright \|\bar{A}_{G(n,p)}\| \approx 1 \text{ and its eigenvalues: } \lambda_n = 1 > \lambda_{n-1} > \cdots + \lambda_1 \ge -1.$

►
$$\lambda_{n-1} \leq 6/\sqrt{np} + O\left((np)^{-3/4}\log n\right)$$
 [FK1981, Vu2007].

- Spectral gap $\Delta = \Omega(1) \implies$ Classical mixing time is in $\widetilde{O}(1)$.
- For the quantum mixing time, all gaps are crucial.

▶ As long as $np \to \infty$, the bulk of the spectrum of $A_{G(n,p)}$ follows the Wigner's semicircle distribution:

$$\rho_{sc}(x) = \begin{cases} \frac{\sqrt{4np(1-p) - x^2}}{2\pi np(1-p)} & \text{if } |x| < 2\sqrt{np(1-p)} \\ 0 & \text{otherwise} \end{cases}$$

As long as $np \to \infty$, the bulk of the spectrum of $A_{G(n,p)}$ follows the Wigner's semicircle distribution:

$$\rho_{sc}(x) = \begin{cases} \frac{\sqrt{4np(1-p) - x^2}}{2\pi np(1-p)} & \text{if } |x| < 2\sqrt{np(1-p)} \\ 0 & \text{otherwise} \end{cases}$$

- Radius of the semicircle: $R = 2\sqrt{np(1-p)}$. For $\bar{A}_{G(n,p)}$: $R = 2\sqrt{\frac{1-p}{np}}$.
- ▶ Divide [-R, R] into small bins and count the eigenvalues of $A_{G(n,p)}$ in each bin:

This distribution will converge to a semicircle.

For any interval $\mathcal{I} \in \mathbb{R}$ if $\mathcal{N}_{\mathcal{I}}$ is the number of eigenvalues of $A_{G(n,p)}$ in \mathcal{I} , then

$$\frac{\mathcal{N}_{\mathcal{I}}}{n} = \int_{\mathcal{I}} \rho_{sc}(x) dx + o(1).$$

Classical eigenvalue location:

For any index $1 \le i \le n-1$, the *classical location* of each eigenvalue λ_i , denoted by γ_i , is given by

$$\int_{-R}^{\gamma_i} \rho_{sc}(x) dx = \frac{i}{n}.$$

• It is known that $\lambda_i = \gamma_i + o(1)$, with probability 1 - o(1).

- ▶ It is known that $\lambda_i = \gamma_i + o(1)$, with probability 1 o(1).
- Macroscopically, each eigenvalue should be close to their classical locations.

- It is known that $\lambda_i = \gamma_i + o(1)$, with probability 1 o(1).
- Macroscopically, each eigenvalue should be close to their classical locations.
- Works only when $|\mathcal{I}| \gg 1$ and not when say $|\mathcal{I}| \sim 1/n$.

- It is known that $\lambda_i = \gamma_i + o(1)$, with probability 1 o(1).
- Macroscopically, each eigenvalue should be close to their classical locations.
- Works only when $|\mathcal{I}| \gg 1$ and not when say $|\mathcal{I}| \sim 1/n$.
- Useless when we need bounds on consecutive gaps, i.e. $\lambda_{i+1} \lambda_i$.

What will we need?

Average eigenvalue gap:

$$\bar{\Delta}_{G(n,p)} = \Theta\left(\frac{1}{n^{3/2}\sqrt{p}}\right)$$

Distance between classical eigenvalue locations: For $i \le n/2$, $r \le n-2i$ and some universal constant c > 0

$$\gamma_{i+r} - \gamma_i \ge c \frac{r}{n^{7/6} i^{1/3} \sqrt{p}}$$

Eigenvalue rigidity criterion

Eigenvalues of $\bar{A}_{G(n,p)}$ are concentrated around their classical locations. We present a simplified version (adapted for our analysis):

Eigenvalue rigidity criterion

Eigenvalues of $\bar{A}_{G(n,p)}$ are concentrated around their classical locations. We present a simplified version (adapted for our analysis):

Eigenvalue rigidity criterion [EYY2011, EKYY2013]:

For $1 \le i \le n-1$, any $\varepsilon \ge 0$ and $p \ge n^{-1/3}$, the eigenvalues of $\bar{A}_{G(n,p)}$ satisfy the inequalities

$$|\lambda_i - \gamma_i| \le \frac{n^{\varepsilon} (n^{-2/3} \alpha_i^{-1/3} + n^{-\phi})}{(\rho n)^{1/2}}$$

with probability 1 - o(1), where

$$\phi := rac{\log pn}{\log n}$$
 and $\alpha_i := \max\{i, n-i\}.$

 Eigenvalue rigidity does not provide information about the smallest eigenvalue gaps.

Eigenvalue rigidity criterion

 Eigenvalue rigidity does not provide information about the smallest eigenvalue gaps.

Microscopic statistics of eigenvalues

Microscopic statistics of eigenvalues

- ▶ What about bounds on consecutive eigenvalue gaps, i.e. $\delta_i = \lambda_{i+1} \lambda_i$?
- Notoriously difficult problems in random matrix theory.
- Even: "Is $\Delta_{min} = 0$?" was open for a long time.

Microscopic statistics of eigenvalues

- ▶ What about bounds on consecutive eigenvalue gaps, i.e. $\delta_i = \lambda_{i+1} \lambda_i$?
- Notoriously difficult problems in random matrix theory.
- Even: "Is $\Delta_{\min} = 0$?" was open for a long time.
- Recently Tao and Vu [TV2014] proved that A
 _{G(n,p)} has a simple spectrum for dense random graphs, almost surely. Later extended to sparse random graphs by Luh and Vu [LV2018].
Microscopic statistics of eigenvalues

- ▶ What about bounds on consecutive eigenvalue gaps, i.e. $\delta_i = \lambda_{i+1} \lambda_i$?
- Notoriously difficult problems in random matrix theory.
- Even: "Is $\Delta_{\min} = 0$?" was open for a long time.
- Recently Tao and Vu [TV2014] proved that A
 _{G(n,p)} has a simple spectrum for dense random graphs, almost surely. Later extended to sparse random graphs by Luh and Vu [LV2018].
- ▶ Not only this, Nguyen, Tao and Vu [NTV2015] showed that each δ_i is separated.

Microscopic statistics of eigenvalues

- ▶ What about bounds on consecutive eigenvalue gaps, i.e. $\delta_i = \lambda_{i+1} \lambda_i$?
- Notoriously difficult problems in random matrix theory.
- Even: "Is $\Delta_{min} = 0$?" was open for a long time.
- Recently Tao and Vu [TV2014] proved that A
 _{G(n,p)} has a simple spectrum for dense random graphs, almost surely. Later extended to sparse random graphs by Luh and Vu [LV2018].
- ▶ Not only this, Nguyen, Tao and Vu [NTV2015] showed that each δ_i is separated.
- They obtain tail bounds on δ_i : How likely is each δ_i to be δ times less than the average?

Tail-bounds on eigenvalue gaps of $\bar{A}_{G(n,p)}$ [NTV2015, LL2019]:For $p \ge \log^6(n)/n$ and $1 \le i \le n-1$ $\sup_{1 \le i \le n-1} \mathbb{P}\left(\delta_i \le \delta \frac{1}{n^{3/2}\sqrt{p}}\right) \le C\delta \log n$,with probability 1 - o(1), where $\delta \ge n^{-C}$

Microscopic statistics of eigenvalues $\bar{A}_{G(n,p)}$

Tail-bounds on eigenvalue gaps of
$$\bar{A}_{G(n,p)}$$
 [NTV2015, LL2019]:For $p \ge \log^6(n)/n$ and $1 \le i \le n-1$ $\sup_{1 \le i \le n-1} \mathbb{P}\left(\delta_i \le \delta \frac{1}{n^{3/2}\sqrt{p}}\right) \le C\delta \log n$,with probability $1 - o(1)$, where $\delta \ge n^{-C}$.

Applying union bound gives a lower bound on Δ_{min} .

Minimum eigenvalue gap $\bar{A}_{G(n,p)}$:

$$\Delta_{\min} \geq rac{1}{n^{5/2+o(1)}\sqrt{p}},$$

with probability 1 - o(1).

Upper bounding Σ_1

$$\begin{split} \overline{\text{Recall:}} \\ \Sigma &= \sum_{i=1}^{n-1} \sum_{r=1}^{n-i} \frac{1}{|\lambda_{i+r} - \lambda_i|}, \\ \text{and } 1/\Delta_{\min} &\leq \Sigma \leq \widetilde{\mathcal{O}} \left(n/\Delta_{\min} \right). \end{split}$$

Upper bounding Σ_1

Recall:

$$\Sigma = \sum_{i=1}^{n-1} \sum_{r=1}^{n-i} \frac{1}{|\lambda_{i+r} - \lambda_i|},$$
and $1/\Delta_{\min} \leq \Sigma \leq \widetilde{\mathcal{O}}(n/\Delta_{\min}).$

First we prove an upper bound on Σ_1 using the tail bounds on δ_i :

Upper bound on
$$\Sigma_1$$
:

$$\Sigma_1 = \sum_{i=1}^{n-1} \frac{1}{|\lambda_{i+1} - \lambda_i|} \le n^{5/2 + o(1)} \sqrt{p},$$
with probability $1 - o(1)$.

Upper bounding Σ_1

Upper bound on Σ_1 :

$$\Sigma_1 = \sum_{i=1}^{n-1} \frac{1}{|\lambda_{i+1} - \lambda_i|} \le n^{5/2 + o(1)} \sqrt{p},$$

with probability 1 - o(1).

Key idea: Many δ_i 's are close to the average. Count them!

$$\blacktriangleright$$
 Σ_1 is close to $1/\Delta_{\min}$.

To now obtain an upper bound on Σ , we combine two things:

(i) Distance between classical eigenvalue locations:

$$\gamma_{i+r} - \gamma_i \geq c \frac{r}{n^{7/6} i^{1/3} \sqrt{p}}.$$

(ii) Eigenvalue rigidity - Eigenvalues are close to the classical locations

$$|\lambda_i - \gamma_i| \le \frac{n^{\varepsilon} (n^{-2/3} \alpha_i^{-1/3} + n^{-\phi})}{(pn)^{1/2}}$$

Idea:

For small values of r use tailbounds of δ_i while for larger values of r make use of eigenvalue rigidity!

Upper bound for Σ

For $p \ge n^{-1/3}$, $\Sigma = \sum_{i=1}^{n-1} \sum_{r=1}^{n-i} \frac{1}{|\lambda_{i+r} - \lambda_i|} \le \mathcal{O}\left(n^{5/2 - \frac{\log p}{\log n} + o(1)} \sqrt{p}\right),$

with probability 1 - o(1).

Proof idea: Split Σ into two parts.

Upper bound for $\boldsymbol{\Sigma}$

For $p \ge n^{-1/3}$, $\Sigma = \sum_{i=1}^{n-1} \sum_{r=1}^{n-i} \frac{1}{|\lambda_{i+r} - \lambda_i|} \le \mathcal{O}\left(n^{5/2 - \frac{\log p}{\log n} + o(1)} \sqrt{p}\right),$

with probability 1 - o(1).

Proof idea: Split Σ into two parts.

$$\Sigma = \sum_{i=1}^{n-1} \sum_{r=1}^{r_*(i)} \frac{1}{|\lambda_{i+r} - \lambda_i|} + \sum_{i=1}^{n-1} \sum_{r=r_*(i)+1}^{n-i} \frac{1}{|\lambda_{i+r} - \lambda_i|}$$

$$\leq r_*(i) \cdot \Sigma_1 + (np)^{1/2} \sum_{r=1}^{n-1} \sum_{i=1}^{n-r} \frac{Cn^{2/3}i^{1/3}}{r}.$$

 Σ is close to $1/\Delta_{\min}$ for dense G(n, p).

Upper bound for Σ

For $p \ge n^{-1/3}$, $\Sigma = \sum_{i=1}^{n-1} \sum_{r=1}^{n-i} \frac{1}{|\lambda_{i+r} - \lambda_i|} \le \mathcal{O}\left(n^{5/2 - \frac{\log p}{\log n} + o(1)} \sqrt{p}\right),$

with probability 1 - o(1).

Proof idea: Split Σ into two parts.

$$\Sigma = \sum_{i=1}^{n-1} \sum_{r=1}^{r_{\star}(i)} \frac{1}{|\lambda_{i+r} - \lambda_i|} + \sum_{i=1}^{n-1} \sum_{r=r_{\star}(i)+1}^{n-i} \frac{1}{|\lambda_{i+r} - \lambda_i|}$$

$$\leq r_{\star}(i) \cdot \Sigma_1 + (np)^{1/2} \sum_{r=1}^{n-1} \sum_{i=1}^{n-r} \frac{Cn^{2/3}i^{1/3}}{r}.$$

 Σ is close to $1/\Delta_{\min}$ for dense G(n, p).

Mixing time of random graphs

Recall:

Limiting distribution:

$$P_f(T o \infty) = \lim_{T o \infty} P_f(T) = \sum_{i=1}^n |\langle f | v_i
angle \langle v_i | \psi_0
angle |^2.$$

- Our results are independent of $|\psi_0\rangle$.
- ▶ All eigenstates of $\bar{A}_{G(n,p)}$ are delocalized, i.e. $|||v_i\rangle||_{\infty} \leq n^{-1/2+o(1)}$, with probability 1 o(1/n) [EKYY 2013, HKM 2018].

Limiting distribution for G(n, p):

Immediately we obtain:

$$P_f(T \to \infty) \leq \widetilde{\mathcal{O}}(1/n),$$

almost surely irrespective of $|\psi_0\rangle$. (Close to uniform!)

Mixing time of random graphs

Limiting distribution:

$$P_f(T \to \infty) \leq \widetilde{\mathcal{O}}(1/n)$$
.

Upper bound on the quantum mixing time:

$$T_{\text{mix}}^{G} = \mathcal{O}\left(\frac{1}{\epsilon} \sum_{i=1}^{n-1} \sum_{r=1}^{n-i} \frac{|\langle \mathbf{v}_{i} | \psi_{\mathbf{0}} \rangle| . |\langle \psi_{\mathbf{0}} | \mathbf{v}_{i+r} \rangle|}{|\lambda_{i+r} - \lambda_{i}|}\right)$$

Quantum mixing time for G(n, p)

From the upper bound on Σ_1 and from the delocalization of the eigenstates we have

$$T_{\mathrm{mix}}^{G(n,p)} = \widetilde{\mathcal{O}}\left(n^{3/2 - \log(p)/\log(n)}\sqrt{p}/\epsilon\right),$$

almost surely for any $p \ge n^{-1/3}$.

Summary of results

Improved upper bound on the quantum mixing time for almost all graphs.

Summary of results

Improved upper bound on the quantum mixing time for almost all graphs.

- For sparser graphs, i.e. when $p = \log^{D}(n)/n$, $D \ge 8$, eigenvalue rigidity breaks down.
- In that case we have a weaker upper bound of

$$T_{\min}^{G(n,p)} = \widetilde{O}(n^{5/2}\sqrt{p}/\epsilon).$$

 Our bounds from RMT hold for Wigner matrices in general (finds applications in several areas of physics).

- Our bounds from RMT hold for Wigner matrices in general (finds applications in several areas of physics).
- Can be extended to hold for Band Wigner Matrices: symmetric $n \times n$ random matrices H with random entries such that any entry $H_{ij} = 0$, if |i j| > W, where $W \le n/2$ is the *band-width*.

- Our bounds from RMT hold for Wigner matrices in general (finds applications in several areas of physics).
- Can be extended to hold for Band Wigner Matrices: symmetric $n \times n$ random matrices H with random entries such that any entry $H_{ij} = 0$, if |i j| > W, where $W \le n/2$ is the band-width. [Ongoing work with Kyle Luh and Vishesh Jain].

- Our bounds from RMT hold for Wigner matrices in general (finds applications in several areas of physics).
- Can be extended to hold for Band Wigner Matrices: symmetric $n \times n$ random matrices H with random entries such that any entry $H_{ij} = 0$, if |i j| > W, where $W \le n/2$ is the band-width. [Ongoing work with Kyle Luh and Vishesh Jain].
- Our techniques can be used to improve bounds on the equilibration times of isolated quantum systems defined by random Hamiltonians.

- Our bounds from RMT hold for Wigner matrices in general (finds applications in several areas of physics).
- Can be extended to hold for Band Wigner Matrices: symmetric $n \times n$ random matrices H with random entries such that any entry $H_{ij} = 0$, if |i j| > W, where $W \le n/2$ is the band-width. [Ongoing work with Kyle Luh and Vishesh Jain].
- Our techniques can be used to improve bounds on the equilibration times of isolated quantum systems defined by random Hamiltonians.
- Randomized time evolution can be harnessed to improve the performance of several quantum walk based algorithms.

- Our bounds from RMT hold for Wigner matrices in general (finds applications in several areas of physics).
- Can be extended to hold for Band Wigner Matrices: symmetric $n \times n$ random matrices H with random entries such that any entry $H_{ij} = 0$, if |i j| > W, where $W \le n/2$ is the band-width. [Ongoing work with Kyle Luh and Vishesh Jain].
- Our techniques can be used to improve bounds on the equilibration times of isolated quantum systems defined by random Hamiltonians.
- ▶ Randomized time evolution can be harnessed to improve the performance of several quantum walk based algorithms. E.g.: Running time of the Glued trees algorithm of Childs et al. (STOC 2003), $\mathcal{O}(n^5) \rightarrow \widetilde{\mathcal{O}}(n^2)$. [C and Y. Atia, arXiv:2005.04062 (2020)].

Ongoing work with Apers, Novo and Roland:

- Ongoing work with Apers, Novo and Roland:
- Continuous-time fast forwarding of Markov chains: For any Markov chain P, initial state v, there exists a continuous-time quantum procedure that outputs $|e^{Pt}v\rangle = \sum_{i} (e^{Pt}v)_{i} |j\rangle / ||e^{Pt}v||$

Ongoing work with Apers, Novo and Roland:

Continuous-time fast forwarding of Markov chains: For any Markov chain P, initial state v, there exists a continuous-time quantum procedure that outputs $|e^{Pt}v\rangle = \sum_{i} (e^{Pt}v)_{i} |j\rangle / ||e^{Pt}v||$ in time $\widetilde{\mathcal{O}}\left(\sqrt{t} ||e^{Pt}v||^{-1}\right)$.

Ongoing work with Apers, Novo and Roland:

Continuous-time fast forwarding of Markov chains: For any Markov chain P, initial state v, there exists a continuous-time quantum procedure that outputs $|e^{Pt}v\rangle = \sum_{j} (e^{Pt}v)_{j} |j\rangle / ||e^{Pt}v||$ in time $\widetilde{\mathcal{O}}\left(\sqrt{t} ||e^{Pt}v||^{-1}\right)$.

Spatial search by continuous-time quantum walk in $\mathcal{O}(\sqrt{HT})$ time even for multiple marked vertices.

- Ongoing work with Apers, Novo and Roland:
- Continuous-time fast forwarding of Markov chains: For any Markov chain P, initial state v, there exists a continuous-time quantum procedure that outputs $|e^{Pt}v\rangle = \sum_{j} (e^{Pt}v)_{j} |j\rangle / ||e^{Pt}v||$ in time $\widetilde{\mathcal{O}}\left(\sqrt{t} ||e^{Pt}v||^{-1}\right)$.
- Spatial search by continuous-time quantum walk in $\mathcal{O}(\sqrt{HT})$ time even for multiple marked vertices.
- Discrete-time quantum walks W using continuous-time quantum walks H: Express

$$W^{K} pprox \sum_{t=-\mathcal{O}(K)}^{+\mathcal{O}(K)} c_{t} e^{-iHt}$$

Thank you for your attention!