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Mixing of Classical random walk on a graph

- Consider an undirected graph G(V ,E) of |V | = n vertices.

- Classical random walk on G is de�ned by an n × n stochastic matrix P
such that Pij = 1/di , where di is the degree of node i .

- If the row-vector v0 is the initial state of the walker, after t-steps:
vt = v0P

t .

- Converges to a stationary distribution: row vector π such that
π = limt→∞ v0P

t . That is, π = πP.

- π is independent of v0.
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Classical Mixing time

Mixing time: Tmix = min{T |∀t ≥ T , ‖vt − π‖ ≤ ε}.

If P has eigenvalues: λn = 1 > λn−1 ≥ · · ·λ1 ≥ −1,

Tmix = Õ (1/∆) ,

where ∆ = 1− λn−1.

I Depends only on the spectral gap

I Independent of the initial distribution of the walker.
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All the Quantum Mechanics you'll need for this talk:

(i) Any quantum state can be represented by a (unit) column vector in a
Hilbert space, denoted as |.〉.

Any n-dimensional quantum state can be expressed as a superposition of
other quantum states:

|ψ0〉 =


c1
c2
...
cn

 = c1


1
0
...
0


︸ ︷︷ ︸
|1〉

+c2


0
1
...
0


︸ ︷︷ ︸
|2〉

+ · · ·+ cn


0
0
...
1


︸ ︷︷ ︸
|N=2n〉

=
N∑
j=1

cj |j〉 .

Quantum states are normalized, i.e. 〈ψ0|ψ0〉 = 1 =⇒
∑N

j=1 |cj |
2 = 1.

In fact, cj denotes the "probability amplitude": probability of |ψ0〉 to be
in the state |j〉 is given by the absolute square of the inner-product (or
overlap) between the states |j〉 and |ψ0〉:

pj = | 〈j |ψ0〉 |2 = |cj |2. [|cj | ≤ 1]
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All the Quantum Mechanics you'll need for this talk

(ii) Any quantum system evolves via the Schrödinger Equation,

i
d

dt
|ψt〉 = H |ψt〉 ,

where H, known as the Hamiltonian is some Hermitian matrix
corresponding to the underlying physical system.

If the Hamiltonian H is time-independent, the state |ψ0〉 after some time
t becomes

|ψt〉 = exp(−iHt) |ψ0〉 .

Quantum evolutions are governed by the unitary matrix U = exp(−iHt).

(iii) Following a projective measurement of |ψt〉 in the basis spanned by the
states |k〉, de�ned by the set of measurement operators {Mk = |k〉 〈k|},
the probability of the system to be in state |j〉 is given by

| 〈j |Mj |ψt〉 |2 = | 〈j |ψt〉 |2.
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Mixing of quantum walks

I Quantum evolutions are unitary and so quantum walks never converge to
a limiting distribution.

I Two notions of quantum mixing:

I Prepare a coherent encoding of π, i.e. |π〉
- Allows us to sample from π, the limiting distribution of the
underlying random walk.

- Related to the hitting time: T = Θ
(√

HT
)
. [CLR, Phys. Rev. A

(2020)]

I Time-averaged mixing of a quantum walk: Sample from the �limiting

distribution� of the quantum walk.

I This will be our focus!
I We will consider continuous-time quantum walks, but results are

valid for its discrete-time counterpart.
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Mixing of quantum walks

I Let G(V ,E) be a graph of n nodes labelled {1..., n} and |E | edges.

I Consider the Hilbert space spanned by the localized quantum states at
the vertices of the graph, i.e. {|1〉 , ... |n〉}

I The adjacency matrix, A of G is de�ned as

Aij =

{
1 if (i , j) ∈ E(G)

0 otherwise
.

I We shall consider the normalized adjacency matrix as the quantum walk
Hamiltonian: ĀG = γAG , where γ = 1/ ‖AG‖.

I The eigenvalues of ĀG : λn = 1 > λn−1 ≥ · · ·λ1 ≥ −1. Also
ĀG |vi 〉 = λi |vi 〉.
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Hamiltonian: ĀG = γAG , where γ = 1/ ‖AG‖.
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Mixing of quantum walks

I The eigenvalues of ĀG : λn = 1 > λn−1 ≥ · · ·λ1 ≥ −1. Also
ĀG |vi 〉 = λi |vi 〉.

Average mixing [AAKV 2001]: Pick a time t ∈ [0,T ] uniformly at random,
evolve |ψ0〉 for this time under ĀG and measure in the node basis.

Pf (T ) =
1

T

∫ T

0

| 〈f | e−i ĀG t |ψ0〉 |2 dt.

Limiting distribution:

Pf (T →∞) = lim
T→∞

Pf (T ) =
n∑

i=1

| 〈f |vi 〉 〈vi |ψ0〉 |2.

Quantum mixing time:

TG
mix = min{T |∀t ≥ T , ‖Pf (T )− Pf (T →∞)‖1 ≤ ε}



Mixing of quantum walks
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Quantum mixing time:
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Upper bound on the quantum mixing time:

TG
mix = O

(
1

ε

n−1∑
i=1

n−i∑
r=1

|〈vi |ψ0〉| . |〈ψ0|vi+r 〉|
|λi+r − λi |

)
.

I TG
mix depends on all eigenvalue gaps and also on the initial state.

I Pf (T →∞) also depends on the initial state in general.
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Our contributions

Can we obtain a better upper bound for the mixing time for general classes of
graphs?

p ≥ n−1+ζ , ζ ≥ 2/3.

I We prove: The quantum mixing time of a graph of n nodes picked
uniformly at random from the set of all simple graphs is in

T
G(n,1/2)
mix

= Õ
(
n3/2

)
,

with probability 1− o(1). Using bound of AAKV2001: Õ
(
n7/2

)
.

I More generally, we obtain a better upper bound on the quantum mixing
time for sparse and dense Erdös-Renyi random graphs. Bound holds for
almost all graphs!
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Erdös-Renyi random graph (Erdös-Renyi 1959)

A graph where each edge exists with
probability p independently of the other
edges. Denoted as G(n, p).

Consider G(n, 1/2): A graph is
picked uniformly at random from the

set of all simple graphs.

I Almost all graphs satisfy property P , if G (n, 1/2) satis�es P
with probability 1− o(1).

I Fraction of graphs satisfying P goes to 1 as n→∞.
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Evolution of Erdös-Renyi random graphs

AG(n,p) is a symmetric random matrix: Each (non-diagonal) entry is 1 with
probability p and 0 with probability 1− p.

Upper bound on the quantum mixing time of G (n, p):

We prove that for p ≥ n−1/3,

T
G(n,p)
mix

= Õ
(
n3/2−log(p)/ log(n)√p

)
,

almost surely.
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Spectral properties of AG(n,p)

I For p ≥ log8(n)/n, the maximum eigenvalue of AG(n,p): Random variable

with mean np and standard deviation
√

p(1− p) as n → ∞ [FK1981,
EKYY2011].

I We will consider as Hamiltonian: ĀG(n,p) = AG(n,p)/(np).

I
∥∥ĀG(n,p)

∥∥ ≈ 1 and its eigenvalues: λn = 1 > λn−1 > · · ·λ1 ≥ −1.

I λn−1 ≤ 6/
√
np +O

(
(np)−3/4 log n

)
[FK1981, Vu2007].

I Spectral gap ∆ = Ω(1) =⇒ Classical mixing time is in Õ(1).

I For the quantum mixing time, all gaps are crucial.
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Wigner's semicircle distribution

I As long as np →∞, the bulk of the spectrum of AG(n,p) follows the
Wigner's semicircle distribution:

ρsc(x) =


√
4np(1− p)− x2

2πnp(1− p)
if |x | < 2

√
np(1− p)

0 otherwise

.

I Radius of the semicircle: R = 2
√

np(1− p). For ĀG(n,p) : R = 2
√

1−p
np

.

I Divide [−R,R] into small bins and count the eigenvalues of AG(n,p) in
each bin:

This distribution will converge
to a semicircle.
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Wigner's semicircle distribution

For any interval I ∈ R if NI is the number of eigen-
values of AG(n,p) in I, then

NI
n

=

∫
I
ρsc(x)dx + o(1).

Classical eigenvalue location:

For any index 1 ≤ i ≤ n− 1, the classical location of
each eigenvalue λi , denoted by γi , is given by∫ γi

−R

ρsc(x)dx =
i

n
.



Wigner's semicircle distribution

I It is known that λi = γi + o(1), with probability 1− o(1).

I Macroscopically, each eigenvalue should be close to their classical locations.

I Works only when |I| � 1 and not when say |I| ∼ 1/n.

I Useless when we need bounds on consecutive gaps, i.e. λi+1 − λi .

What will we need?

Average eigenvalue gap:

∆̄G(n,p) = Θ

(
1

n3/2
√
p

)
Distance between classical eigenvalue locations: For i ≤ n/2, r ≤ n − 2i
and some universal constant c > 0

γi+r − γi ≥ c
r

n7/6i1/3
√
p
.
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Eigenvalue rigidity criterion

Eigenvalues of ĀG(n,p) are concentrated around their classical

locations. We present a simpli�ed version (adapted for our

analysis):

Eigenvalue rigidity criterion [EYY2011, EKYY2013]:

For 1 ≤ i ≤ n − 1, any ε ≥ 0 and p ≥ n−1/3, the eigenvalues of ĀG(n,p)

satisfy the inequalities

|λi − γi | ≤
nε(n−2/3α

−1/3
i + n−φ)

(pn)1/2

with probability 1− o(1), where

φ :=
log pn

log n
and αi := max{i , n − i}.

I Eigenvalue rigidity does not provide information about the smallest
eigenvalue gaps.
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Eigenvalues of ĀG(n,p) are concentrated around their classical

locations. We present a simpli�ed version (adapted for our

analysis):

Eigenvalue rigidity criterion [EYY2011, EKYY2013]:

For 1 ≤ i ≤ n − 1, any ε ≥ 0 and p ≥ n−1/3, the eigenvalues of ĀG(n,p)
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I Eigenvalue rigidity does not provide information about the smallest
eigenvalue gaps.



Microscopic statistics of eigenvalues

I What about bounds on consecutive eigenvalue gaps, i.e. δi = λi+1 − λi?

I Notoriously di�cult problems in random matrix theory.

I Even: "Is ∆min = 0 ?" was open for a long time.

I Recently Tao and Vu [TV2014] proved that ĀG(n,p) has a simple spectrum
for dense random graphs, almost surely. Later extended to sparse random
graphs by Luh and Vu [LV2018].

I Not only this, Nguyen, Tao and Vu [NTV2015] showed that each δi is
separated.

I They obtain tail bounds on δi : How likely is each δi to be δ times less
than the average?

Tail-bounds on eigenvalue gaps of ĀG(n,p) [NTV2015, LL2019]:

For p ≥ log6(n)/n and 1 ≤ i ≤ n − 1

sup
1≤i≤n−1

P
(
δi ≤ δ

1

n3/2
√
p

)
≤ Cδ log n,

with probability 1− o(1), where δ ≥ n−C
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Microscopic statistics of eigenvalues ĀG(n,p)

Tail-bounds on eigenvalue gaps of ĀG(n,p) [NTV2015, LL2019]:

For p ≥ log6(n)/n and 1 ≤ i ≤ n − 1

sup
1≤i≤n−1

P
(
δi ≤ δ

1

n3/2
√
p

)
≤ Cδ log n,

with probability 1− o(1), where δ ≥ n−C .

Applying union bound gives a lower bound on ∆min.

Minimum eigenvalue gap ĀG(n,p):

∆min ≥
1

n5/2+o(1)
√
p
,

with probability 1− o(1).



Upper bounding Σ1

Recall:

Σ =
n−1∑
i=1

n−i∑
r=1

1

|λi+r − λi |
,

and 1/∆min ≤ Σ ≤ Õ (n/∆min).

First we prove an upper bound on Σ1 using the tail bounds on δi :

Upper bound on Σ1:

Σ1 =
n−1∑
i=1

1

|λi+1 − λi |
≤ n5/2+o(1)√p,

with probability 1− o(1).
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Upper bounding Σ1

Upper bound on Σ1:

Σ1 =
n−1∑
i=1

1

|λi+1 − λi |
≤ n5/2+o(1)√p,

with probability 1− o(1).

Key idea: Many δi 's are close to the average. Count them!

I Σ1 is close to 1/∆min.



Upper bound on Σ

To now obtain an upper bound on Σ, we combine two things:

(i) Distance between classical eigenvalue locations:

γi+r − γi ≥ c
r

n7/6i1/3
√
p
.

(ii) Eigenvalue rigidity - Eigenvalues are close to the classical locations

|λi − γi | ≤
nε(n−2/3α

−1/3
i + n−φ)

(pn)1/2

Idea:

For small values of r use tailbounds of δi while for larger values of r make
use of eigenvalue rigidity!



Upper bound on Σ

Idea:

I For small values of r use tailbounds of δi while for larger values of r
make use of eigenvalue rigidity!

I Exploit eigenvalue rigidity for large enough r such that (γi+r − γi ) is
larger than the error due to |λi+r − γi+r |+ |λi − γi |.

I Critical value: r?(i) ≤ nε−log p/ log n.



Upper bound on Σ

Upper bound for Σ

For p ≥ n−1/3,

Σ =
n−1∑
i=1

n−i∑
r=1

1

|λi+r − λi |
≤ O

(
n5/2−

log p
log n

+o(1)√p
)
,

with probability 1− o(1).

Proof idea: Split Σ into two parts.

Σ =
n−1∑
i=1

r?(i)∑
r=1

1

|λi+r − λi |︸ ︷︷ ︸
Use the upperbound on Σ1

+
n−1∑
i=1

n−i∑
r=r?(i)+1

1

|λi+r − λi |︸ ︷︷ ︸
Exploit rigidity

≤ r?(i) · Σ1 + (np)1/2
n−1∑
r=1

n−r∑
i=1

Cn2/3i1/3

r
.

Σ is close to 1/∆min for dense G(n, p).
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Mixing time of random graphs

Recall:

Limiting distribution:

Pf (T →∞) = lim
T→∞

Pf (T ) =
n∑

i=1

| 〈f |vi 〉 〈vi |ψ0〉 |2.

I Our results are independent of |ψ0〉.
I All eigenstates of ĀG(n,p) are delocalized, i.e. ‖|vi 〉‖∞ ≤ n−1/2+o(1), with

probability 1− o(1/n) [EKYY 2013, HKM 2018].

Limiting distribution for G(n, p):

Immediately we obtain:

Pf (T →∞) ≤ Õ (1/n) ,

almost surely irrespective of |ψ0〉. (Close to uniform!)



Mixing time of random graphs

Limiting distribution:

Pf (T →∞) ≤ Õ (1/n) .

Upper bound on the quantum mixing time:

TG
mix = O

(
1

ε

n−1∑
i=1

n−i∑
r=1

|〈vi |ψ0〉| . |〈ψ0|vi+r 〉|
|λi+r − λi |

)
.

Quantum mixing time for G (n, p)

From the upper bound on Σ1 and from the delocalization of the eigenstates
we have

T
G(n,p)
mix

= Õ
(
n3/2−log(p)/ log(n)√p/ε

)
,

almost surely for any p ≥ n−1/3.



Summary of results

p ≥ n−1+ζ , where ζ ≥ 2/3.

I Improved upper bound on the quantum mixing time for almost all graphs.

I For sparser graphs, i.e. when p = logD(n)/n, D ≥ 8, eigenvalue rigidity
breaks down.

I In that case we have a weaker upper bound of

T
G(n,p)
mix

= Õ(n5/2
√
p/ε).
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Ongoing and Future work

I Our bounds from RMT hold for Wigner matrices in general (�nds
applications in several areas of physics).

I Can be extended to hold for Band Wigner Matrices: symmetric n × n
random matrices H with random entries such that any entry Hij = 0, if
|i − j | >W , where W ≤ n/2 is the band-width.
[Ongoing work with Kyle Luh and Vishesh Jain].

I Our techniques can be used to improve bounds on the equilibration times
of isolated quantum systems de�ned by random Hamiltonians.

I Randomized time evolution can be harnessed to improve the performance
of several quantum walk based algorithms. E.g.: Running time of the
Glued trees algorithm of Childs et al. (STOC 2003), O(n5)→ Õ(n2).
[C and Y. Atia, arXiv:2005.04062 (2020)].
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Ongoing and Future work

I Ongoing work with Apers, Novo and Roland:

I Continuous-time fast forwarding of Markov chains: For any Markov chain
P, initial state v , there exists a continuous-time quantum procedure that

outputs |ePtv〉 =
∑

j(e
Ptv)j |j〉 /

∥∥ePtv∥∥ in time Õ
(√

t
∥∥ePtv∥∥−1).

I Spatial search by continuous-time quantum walk in O(
√
HT ) time even

for multiple marked vertices.

I Discrete-time quantum walks W using continuous-time quantum walks
H: Express

W K ≈
+O(K)∑

t=−O(K)

cte
−iHt .
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Thank you for your attention!


