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- Consider an undirected graph G(V/, E) of |V| = n vertices.

- Classical random walk on G is defined by an n x n stochastic matrix P
such that P; = 1/d;, where d; is the degree of node i.

- If the row-vector v is the initial state of the walker, after t-steps:
vi = v Pt

- Converges to a stationary distribution: row vector 7 such that
7T = limi—oo voP'. Thatis, 7 = wP.

- m is independent of vo.
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Classical Mixing time

Mixing time: Tnix = min{T|Vt > T, |v: — 7|| < €}.

If P has eigenvalues: \y =1 > X1 > -2 Ay > —1,
Tmix = 6 (l/A) )
where A =1 — \,_1.

» Depends only on the spectral gap

» Independent of the initial distribution of the walker.




All the Quantum Mechanics you'll need for this talk:

(i) Any quantum state can be represented by a (unit) column vector in a
Hilbert space, denoted as |.).




All the Quantum Mechanics you'll need for this talk:

(i) Any quantum state can be represented by a (unit) column vector in a
Hilbert space, denoted as |.).

Any n-dimensional quantum state can be expressed as a superposition of
other quantum states:

C1 1 0 0
@R 0 1 0 N
Wo)=1] . |=al|.|+e]| |+ +a]|. ZZCJ‘U>.
G 0 0 1
—— —— ——

1) 2) [N=2")




All the Quantum Mechanics you'll need for this talk:

(i) Any quantum state can be represented by a (unit) column vector in a
Hilbert space, denoted as |.).

Any n-dimensional quantum state can be expressed as a superposition of
other quantum states:

C1 1 0 0
o) 0 1 0 N
Wo)=1] . |=al|.|+e]| |+ +a]|. ZZCJ‘U>.
o o o o j=1
Cn 0 0 1
—_— =~ ——
1) 12) [N=2")

Quantum states are normalized, i.e. (¢p|tho) =1 = ZJNZI 6|2 = 1.




All the Quantum Mechanics you'll need for this talk:

(i) Any quantum state can be represented by a (unit) column vector in a
Hilbert space, denoted as |.).

Any n-dimensional quantum state can be expressed as a superposition of
other quantum states:
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Quantum states are normalized, i.e. (¢p|tho) =1 = Zszl 6|2 = 1.

In fact, ¢; denotes the "probability amplitude": probability of |1) to be
in the state |j) is given by the absolute square of the inner-product (or
overlap) between the states |j) and |¢o):

pi=1Glo) P =1l llgl<1]
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(ii) Any quantum system evolves via the Schrédinger Equation,

(iii)

.d
U [ve) = H ),

where H, known as the Hamiltonian is some Hermitian matrix
corresponding to the underlying physical system.

If the Hamiltonian H is time-independent, the state |¢o) after some time
t becomes

|1he) = exp(—iHt) |¢ho) .

Quantum evolutions are governed by the unitary matrix U = exp(—iHt).

Following a projective measurement of |1);) in the basis spanned by the
states |k), defined by the set of measurement operators { My = |k) (k|},
the probability of the system to be in state |j) is given by

| GIMilpe) 12 = | Gile) 2.
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Mixing of quantum walks

» Quantum evolutions are unitary and so quantum walks never converge to
a limiting distribution.

> Two notions of quantum mixing:
> Prepare a coherent encoding of 7, i.e. |m)
- Allows us to sample from 7, the limiting distribution of the
underlying random walk.
- Related to the hitting time: T = © (\/HT). [CLR, Phys. Rev. A
(2020)]
> Time-averaged mixing of a quantum walk: Sample from the “limiting

distribution” of the quantum walk.
» This will be our focus!
> We will consider continuous-time quantum walks, but results are
valid for its discrete-time counterpart.
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» Consider the Hilbert space spanned by the localized quantum states at
the vertices of the graph, i.e. {|1),...|n)}

» The adjacency matrix, A of G is defined as

po— {1 if (i,)) € E(G)

0 otherwise

> We shall consider the normalized adjacency matrix as the quantum walk
Hamiltonian: Ag = vAg, where v =1/ ||Ag||.

> '[he eigenvalues of Ac: An=1>Ap_1 > -1 > —1. Also
AG |V,‘> = )\,‘ |V,‘>.
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Limiting distribution:

Pr(T — c0) = lim Py(T) = Z| (Flvi) (vilo) 7.

Quantum mixing time:

Toix = min{ TVt > T, ||Pr(T) = Pr(T = oo)ll, < e}

Upper bound on the quantum mixing time:

n—1 n—i
7S —0o [{vilo) - [{olvisr)] |
R ldniie]

i=1 r=1

> TS, depends on all eigenvalue gaps and also on the initial state.

» Pr(T — o0) also depends on the initial state in general.
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Upper bound on the quantum mixing time:

n—1 n—i
7S —0o [{vilo) - [{olvier)] |
< Zz |)\I+f_)\|

i=1 r=1

We need to bound

n—1 n—i

=SS

i=1 r=1 i =

If Amin is the minimum of all eigenvalue gaps,

22 n
<X < 5
_z_ O<Amin)

So TS, = 6(n/Amin) is an upper bound for all graphs.

min

For cycles, the mixing time is in O(n). [AAKV 2001].
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Our contributions

Can we obtain a better upper bound for the mixing time for general classes of
graphs?
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mix

p =log®(m)/n p=n"'" p=c p=1
Not to scale
p>ntC, ¢ >2/3.

» We prove: The quantum mixing time of a graph of n nodes picked
uniformly at random from the set of all simple graphs is in

T6(01/2) _ & (ns/z) 7

with probability 1 — o(1). Using bound of AAKV2001: O (n7/2).

» More generally, we obtain a better upper bound on the quantum mixing
time for sparse and dense Erdds-Renyi random graphs. Bound holds for
almost all graphs!




ErdGs-Renyi random graph (Erd6s-Renyi 1959)

A graph where each edge exists with
probability p independently of the other
edges. Denoted as G(n, p).




ErdGs-Renyi random graph (Erd6s-Renyi 1959)

A graph where each edge exists with
probability p independently of the other
edges. Denoted as G(n, p).

Consider G(n,1/2): A graph is
picked uniformly at random from the
set of all simple graphs.




ErdGs-Renyi random graph (Erd6s-Renyi 1959)

A graph where each edge exists with
probability p independently of the other
edges. Denoted as G(n, p).

Consider G(n,1/2): A graph is
picked uniformly at random from the
set of all simple graphs.

» Almost all graphs satisfy property P, if G(n,1/2) satisties P
with probability 1 — o(1).




ErdGs-Renyi random graph (Erd6s-Renyi 1959)

A graph where each edge exists with
probability p independently of the other
edges. Denoted as G(n, p).

Consider G(n,1/2): A graph is
picked uniformly at random from the
set of all simple graphs.

» Almost all graphs satisfy property P, if G(n,1/2) satisties P
with probability 1 — o(1).

» Fraction of graphs satisfying P goes to 1 as n — oo.
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Evolution of ErdGs-Renyi random graphs

p=1/n p=In(n)/n p=1

Isolated trees, Emergence of Complete graph
paths and nodes giant component

AG(n,p) is @ symmetric random matrix: Each (non-diagonal) entry is 1 with
probability p and 0 with probability 1 — p.

Upper bound on the quantum mixing time of G(n, p):

We prove that for p > n=%/3,

mix

TGP _ & (ns/zqog(,,)/log(n) \/5) 7

almost surely.
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Spectral properties of Ag(, )

> For p > log®(n)/n, the maximum eigenvalue of AgG(n,p): Random variable
with mean np and standard deviation \/p(1 — p) as n — oo [FK1981,
EKYY2011].

» We will consider as Hamiltonian: A(;(,,,p) = Ag(n,p)/(nP).

> || Agnp|| & 1 and its eigenvalues: Ay =1 > Xp_g > Ay > —1.
> A1 <6/ AP+ O ((np)*f'/“ log n) [FK1981, Vu2007].

> Spectral gap A = Q(1) = Classical mixing time is in O(1).

» For the quantum mixing time, all gaps are crucial.
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> As long as np — oo, the bulk of the spectrum of Ag(, ) follows the
Wigner's semicircle distribution:

= ) = &
4np(1 — p) — x if x| <24/np(1—p)

psc(x) = 2mnp(1 — p)
0 otherwise

> Radius of the semicircle: R =2/np(1 — p). For Ag(np): R =2,/ ln_p”.

» Divide [-R, R] into small bins and count the eigenvalues of Ag,,p) in
each bin:

) This distribution will converge
i to a semicircle.

% Eigenvalues




Wigner's semicircle distribution

For any interval Z € R if ANz is the number of eigen-
values of Ag(npy in Z, then

&:/Ipsc(x)dero(l).

n

Classical eigenvalue location:

For any index 1 < i < n— 1, the classical location of
each eigenvalue \;, denoted by 7, is given by

Yi d I
/Rpsc(x) bt = o

i/n

E
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Wigner's semicircle distribution

» It is known that A\j = ~; + o(1), with probability 1 — o(1).

» Macroscopically, each eigenvalue should be close to their classical locations.

» Works only when |Z| > 1 and not when say |Z| ~ 1/n.
> Useless when we need bounds on consecutive gaps, i.e. Ait1 — Aj.
What will we need?

Average eigenvalue gap:

~ 1
Been =0 (G275)

Distance between classical eigenvalue locations: For i < n/2, r < n—2i
and some universal constant ¢ > 0

r
Yivr =V 2 C—rerm—
n7/6,1/3\/5
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Eigenvalues of ’Z\G(n,p) are concentrated around their classical
locations. We present a simplified version (adapted for our
analysis):

Eigenvalue rigidity criterion [EYY2011, EKYY2013]:

For1<i<n—1 anye >0and p > n~1/3 the eigenvalues of AG(W)
satisfy the inequalities

n*(n=23a;'? 4 n=?)

Ai — il <
|Ai =il < (on)i72
with probability 1 — o(1), where
¢ = ||Oogglj7n and «; := max{i,n—i}.

» Eigenvalue rigidity does not provide information about the smallest
eigenvalue gaps.
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> Eigenvalue rigidity does not provide information about the smallest
eigenvalue gaps.

.
Nisr Yir O AN N
’, \

Yie1 A N Yi Aia Vi1

— : Classical location

= Actual eigenvalue
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» What about bounds on consecutive eigenvalue gaps, i.e. §; = A\it1 — \;?
» Notoriously difficult problems in random matrix theory.

> Even: "Is Amin = 0 ?" was open for a long time.

» Recently Tao and Vu [TV2014] proved that Ac(n,p) has a simple spectrum
for dense random graphs, almost surely. Later extended to sparse random
graphs by Luh and Vu [LV2018].

> Not only this, Nguyen, Tao and Vu [NTV2015] showed that each d; is
separated.

» They obtain tail bounds on ¢§;: How likely is each d; to be § times less
than the average?

Tail-bounds on eigenvalue gaps of Ag(, ) [NTV2015, LL2019]:
For p > log®(n)/nand 1 <i<n—1

1
sup P(6i<d——— ) < Célogn,
1§i§’:—1 ( - "3/2\/ﬁ> a €

with probability 1 — o(1), where § > n= ¢




Microscopic statistics of eigenvalues Ag(, )

Tail-bounds on eigenvalue gaps of Ag(mp) [NTV2015, LL2019]:

For p > log®(n)/nand 1 <i<n—1

1
sup P (6, S 6H3T\/ﬁ> S CH IOg n,

1<i<n—1

with probability 1 — o(1), where § > n~€.

Applying union bound gives a lower bound on Apip,.

Minimum eigenvalue gap Ag, ,):

1
Amin > ,,S/T(l)\/ﬁ’

with probability 1 — o(1).




Upper bounding ¥,

Recall:

n—1 n—i

. 1
Z_ZZ [Airr — Al

=1 r=1

and 1/Amin < T < O (n/Amin).




Upper bounding ¥,

Recall:

n—1 n—i

== Z|>‘l-%—r—)\|

=191

and 1/Amin < T < O (n/Amin).

First we prove an upper bound on ¥; using the tail bounds on ¢;:

Upper bound on ¥;:

L= Z » < n®/2® /p,

i+1 —

with probability 1 — o(1).




Upper bounding ¥,

Upper bound on ¥:

n—1
1 5/2+0(1)
oy = — <
' ; RFESY VP

with probability 1 — o(1).

Key idea: Many §;’s are close to the average. Count them!

> Y, is close to 1/Amin.




Upper bound on ©

To now obtain an upper bound on X, we combine two things:

(i) Distance between classical eigenvalue locations:

7
Yitr — Vi = Cm'

(ii) Eigenvalue rigidity - Eigenvalues are close to the classical locations

n‘s(nfz/g’ozi_l/3 +n79)

A — il <
N PO

Idea:

For small values of r use tailbounds of d; while for larger values of r make
use of eigenvalue rigidity!




Upper bound on ©

Idea:
» For small values of r use tailbounds of d; while for larger values of r
make use of eigenvalue rigidity!

> Exploit eigenvalue rigidity for large enough r such that (yitr — i) is
larger than the error due to |Nitr — Yigr| + [Ni — 7il-

> Critical value: r, (i) < ne—'8p/logn,

Yis1 A Ai Yi A Yi1

— : Classical location

—: Actual eigenvalue




Upper bound on ©

Upper bound for ©

For p > n~'/3,
Z n—1 n—i 1 < O 5/2_:ogp+o(1)
- ey — N\i| log n
i=1 r=1 [Nigr = Ni| — (" \/E) 7

with probability 1 — o(1).

Proof idea: Split ¥ into two parts.



Upper bound on ©

Upper bound for ©

For p > n~*/3,
Z n—1 n—i 1 < O 5/2_:ogp+o(1)
- ey — N\i| log n
i=1 r=1 [Nigr = Ni| — (" \/E) 7

with probability 1 — o(1).

Proof idea: Split ¥ into two parts.

n—1 ry (i) n—1 n—i
D 3 3= D DD Do
=1 r=1 |Aitr il i=1 r=r.(i)+1 Aitr il
Use the upperbound on X3 Exploit rigidity

n—1 n—r c
Cn2/3ll/3

< r(i) T + (np)'2 3% =

r=1 j=1

Y is close to 1/Ani, for dense G(n, p).



Upper bound on ©

Upper bound for ©

For p > n*1/3,
n—1 n—i 1 log
Y = ——— <O (ns/z_'og"+°(1) ) )
22 T3 S &
with probability 1 — o(1).
Proof idea: Split ¥ into two parts.
n—1 ry (i) 1 n—1 n—i 1
L= _ + —_—
; ; |>\i+r - )\1| ; r:r*%-f—l |)\i+r — )\,l
Use the upperbound on X3 Exploit rigidity

n—1 n—r c
Cn2/3ll/3

< r(i)- T + ()2 >°> " =

r=1 j=1

Y is close to 1/Ani, for dense G(n, p).




Mixing time of random graphs

Recall:
Limiting distribution:

PH(T = o00) = lim Pr(T) = Z| (Flvi) (vilo) 2.

> Our results are independent of |¢0).

> All eigenstates of Ag(, ) are delocalized, i.e. |||vi)||., < n~*/2"°M), with

probability 1 — o(1/n) [EKYY 2013, HKM 2018].

Limiting distribution for G(n, p):

Immediately we obtain:
Pe(T — 00) < O(1/n),

almost surely irrespective of [¢g). (Close to uniform!)




Mixing time of random graphs

Limiting distribution:
Pr(T — 00) < O(1/n).
Upper bound on the quantum mixing time:

n—1 n—i
6 g [(iltbo)] - | (Wolvier)] |
[EEs i)

i=1 r=1

Quantum mixing time for G(n, p)

From the upper bound on X1 and from the delocalization of the eigenstates
we have

T G(n,p) __ O (n3/2—|og(p)/ Iog(n)\/ﬁ/e) ,

mix

almost surely for any p > n= /3.




Summary of results

(;(:v) O(HS/Z\/—/E) T,f,EL"”) — O(nz—g/Z/E) T:”(;Lp) — 6(n3/2/e)

-1/3 p=c p=1

Not to scale

p =log*(m)/n p=n

p > n~ 1< where ¢ >2/3.

» Improved upper bound on the quantum mixing time for almost all graphs.




Summary of results

(;(;lv) O(ns/z‘/—/e) T,ﬁEL"”) — O(nz—g/Z/E) T:”(:.p) — 0(n3/2/e)

-1/3 p=c p=1
Not to scale

p =log*(m)/n p=n

p > n~ 1< where ¢ >2/3.

» Improved upper bound on the quantum mixing time for almost all graphs.
> For sparser graphs, i.e. when p = log®(n)/n, D > 8, eigenvalue rigidity
breaks down.

> In that case we have a weaker upper bound of

ToimP) = O(n*/?\/p/e).
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Ongoing and Future work

» Our bounds from RMT hold for Wigner matrices in general (finds
applications in several areas of physics).

> Can be extended to hold for Band Wigner Matrices: symmetric n X n
random matrices H with random entries such that any entry H; = 0, if
[i—j]| > W, where W < n/2 is the band-width.

[Ongoing work with Kyle Luh and Vishesh Jain].

» Our techniques can be used to improve bounds on the equilibration times
of isolated quantum systems defined by random Hamiltonians.

» Randomized time evolution can be harnessed to improve the performance
of several quantum walk based algorithms. E.g.: Running time of the
Glued trees algorithm of Childs et al. (STOC 2003), O(n®) — O(n?).

[C and Y. Atia, arXiv:2005.04062 (2020)).
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Ongoing and Future work

» Ongoing work with Apers, Novo and Roland:

> Continuous-time fast forwarding of Markov chains: For any Markov chain
P, initial state v, there exists a continuous-time quantum procedure that

outputs |e”fv) = > (€ V)i i) / || v]| in time o (\fHePth )

> Spatial search by continuous-time quantum walk in O(v/HT) time even
for multiple marked vertices.

» Discrete-time quantum walks W using continuous-time quantum walks
H: Express
+O(K)

K —iHt
Ww" ~ E ce M.

t=—0O(K)




Thank you for your attention!




